5,824 research outputs found

    Information Security as Strategic (In)effectivity

    Full text link
    Security of information flow is commonly understood as preventing any information leakage, regardless of how grave or harmless consequences the leakage can have. In this work, we suggest that information security is not a goal in itself, but rather a means of preventing potential attackers from compromising the correct behavior of the system. To formalize this, we first show how two information flows can be compared by looking at the adversary's ability to harm the system. Then, we propose that the information flow in a system is effectively information-secure if it does not allow for more harm than its idealized variant based on the classical notion of noninterference

    Mode Confinement in Photonic Quasi-Crystal Point-Defect Cavities for Particle Accelerators

    Full text link
    In this Letter, we present a study of the confinement properties of point-defect resonators in finite-size photonic-bandgap structures composed of aperiodic arrangements of dielectric rods, with special emphasis on their use for the design of cavities for particle accelerators. Specifically, for representative geometries, we study the properties of the fundamental mode (as a function of the filling fraction, structure size, and losses) via 2-D and 3-D full-wave numerical simulations, as well as microwave measurements at room temperature. Results indicate that, for reduced-size structures, aperiodic geometries exhibit superior confinement properties by comparison with periodic ones.Comment: 4 pages, 4 figures, accepted for publication in Applied Physics Letter

    An Algorithmic Approach to Quantum Field Theory

    Full text link
    The lattice formulation provides a way to regularize, define and compute the Path Integral in a Quantum Field Theory. In this paper we review the theoretical foundations and the most basic algorithms required to implement a typical lattice computation, including the Metropolis, the Gibbs sampling, the Minimal Residual, and the Stabilized Biconjugate inverters. The main emphasis is on gauge theories with fermions such as QCD. We also provide examples of typical results from lattice QCD computations for quantities of phenomenological interest.Comment: 44 pages, to be published in IJMP

    Microwave apparatus for gravitational waves observation

    Full text link
    In this report the theoretical and experimental activities for the development of superconducting microwave cavities for the detection of gravitational waves are presented.Comment: 42 pages, 28 figure

    Consanguinity and polygenic diseases: a model for antibody deficiencies

    Get PDF
    Primary immunodeficiencies represent a heterogeneous group of disorders of the immune system, predisposing to various types of infections. Among them, common variable immunodeficiency is the most common symptomatic antibody deficiency. It includes several different forms characterized by defects in the terminal stage of B lymphocyte differentiation, leading to markedly reduced immunoglobulin serum levels and increased susceptibility to bacterial infections. The clinical phenotype is complex, including autoimmunity, granulomatous inflammation, lymphoproliferative disorders and malignancies. Rare autosomal recessive mutations in a number of single genes have recently been reported. However, the underlying genetic defects remain unknown in the majority of cases. In order to seek new genes responsible for the disease, we studied a consanguineous Italian family through exome sequencing combined with homozygosity mapping. Six missense homozygous variants passed our filtering selection and at least two of them were associated with some aspects of the pathological phenotype. Our data remark the complexity of immune system disorders and emphasize the difficulty to understand the significance of genetic results and their correlation with the disease phenotype

    Second large-scale Monte Carlo study for the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) represents the next generation of ground based instruments for Very High Energy gamma-ray astronomy. It is expected to improve on the sensitivity of current instruments by an order of magnitude and provide energy coverage from 20 GeV to more than 200 TeV. In order to achieve these ambitious goals Monte Carlo (MC) simulations play a crucial role, guiding the design of CTA. Here, results of the second large-scale MC production are reported, providing a realistic estimation of feasible array candidates for both Northern and Sourthern Hemisphere sites performance, placing CTA capabilities into the context of the current generation of High Energy γ\gamma-ray detectors.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Monte Carlo Performance Studies of Candidate Sites for the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory with sensitivity in the energy range from 20 GeV to beyond 300 TeV. CTA is proposed to consist of two arrays of 40-100 imaging atmospheric Cherenkov telescopes, with one site located in each of the Northern and Southern Hemispheres. The evaluation process for the candidate sites for CTA is supported by detailed Monte Carlo simulations, which take different attributes like site altitude and geomagnetic field configuration into account. In this contribution we present the comparison of the sensitivity and performance of the different CTA site candidates for the measurement of very-high energy gamma rays.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Distributed Computing Grid Experiences in CMS

    Get PDF
    The CMS experiment is currently developing a computing system capable of serving, processing and archiving the large number of events that will be generated when the CMS detector starts taking data. During 2004 CMS undertook a large scale data challenge to demonstrate the ability of the CMS computing system to cope with a sustained data-taking rate equivalent to 25% of startup rate. Its goals were: to run CMS event reconstruction at CERN for a sustained period at 25 Hz input rate; to distribute the data to several regional centers; and enable data access at those centers for analysis. Grid middleware was utilized to help complete all aspects of the challenge. To continue to provide scalable access from anywhere in the world to the data, CMS is developing a layer of software that uses Grid tools to gain access to data and resources, and that aims to provide physicists with a user friendly interface for submitting their analysis jobs. This paper describes the data challenge experience with Grid infrastructure and the current development of the CMS analysis system

    Heavy-Quark Symmetry and the Electromagnetic Decays of Excited Charmed Strange Mesons

    Full text link
    Heavy-hadron chiral perturbation theory (HHχ\chiPT) is applied to the decays of the even-parity charmed strange mesons, D_{s0}(2317) and D_{s1}(2460). Heavy-quark spin symmetry predicts the branching fractions for the three electromagnetic decays of these states to the ground states D_s and D_s^* in terms of a single parameter. The resulting predictions for two of the branching fractions are significantly higher than current upper limits from the CLEO experiment. Leading corrections to the branching ratios from chiral loop diagrams and spin-symmetry violating operators in the HHχ\chiPT Lagrangian can naturally account for this discrepancy. Finally the proposal that the D_{s0}(2317) (D_{s1}(2460)) is a hadronic bound state of a D (D^*) meson and a kaon is considered. Leading order predictions for electromagnetic branching ratios in this molecular scenario are in very poor agreement with existing data.Comment: 25 pages, 3 figure

    Sea quark effects in B_K from N_f=2 clover-improved Wilson fermions

    Full text link
    We report calculations of the parameter B_K appearing in the Delta S=2 neutral kaon mixing matrix element, whose uncertainty limits the power of unitarity triangle constraints for testing the standard model or looking for new physics. We use two flavours of dynamical clover-improved Wilson lattice fermions and look for dependence on the dynamical quark mass at fixed lattice spacing. We see some evidence for dynamical quark effects and in particular B_K decreases as the sea quark masses are reduced towards the up/down quark mass.Comment: 17 pages, 4 figures, uses JHEP3.cls, added comments and reference
    corecore