839 research outputs found

    Narrow structure in the coherent population trapping resonances in rubidium and Rayleigh scattering

    Full text link
    The measurement of the coherent-population-trapping (CPT) resonances in uncoated Rb vacuum cells has shown that the shape of the resonances is different in different cells. In some cells the resonance has a complex shape - a narrow Lorentzian structure, which is not power broadened, superimposed on the power broadened CPT resonance. The results of the performed investigations on the fluorescence angular distribution are in agreement with the assumption that the narrow structure is a result of atom interaction with Rayleigh scattering light. The results are interesting for indication of the vacuum cleanness of the cells and building of magnetooptical sensors

    The video endoscopy inguinal lymphadenectomy for vulvar cancer: A pilot study

    Get PDF
    Objective This prospective pilot study aims to validate feasibility, efficacy and safeness of the innovative technique of video endoscopy inguinal lymphadenectomy (VEIL) and compare it to open inguinal lymphadenectomy (OIL) in the staging and treatment of vulvar cancer (VC). Material and methods All patients affected by VC suitable for bilateral inguinal-femoral lymphadenectomy were prospectively enrolled and submitted to VEIL on one side and OIL contralaterally, sparing the saphenous vein. The surgical and post-surgical data were collected. Univariate analysis included chi square analysis or Fisher's exact test, when appropriate for categorical variables, and the Student t test and Mann–Whitney test when appropriate for continuous variables. Results Between October 2014 and June 2015 fifteen patients were valuable for the study. Although nodal retrieval was comparable for both procedures, operative time was higher after VEIL. No intraoperative complications were observed in both techniques. Postoperative complications were observed in 3 and 2 cases for OIL and VEIL respectively. One patient needed reoperation after OIL for wound necrosis and infection. According to Campisi's stage, lymphedema resulted significantly to be lower after VEIL (p = 0.024). Conclusions Waiting for larger series and longer follow-up data, the VEIL seems to be feasible allowing a radical removal of inguinal lymph nodes as well as OIL with lower morbidity

    Detailed studies of non-linear magneto-optical resonances at D1 excitation of Rb-85 and Rb-87 for partially resolved hyperfine F-levels

    Full text link
    Experimental signals of non-linear magneto-optical resonances at D1 excitation of natural rubidium in a vapor cell have been obtained and described with experimental accuracy by a detailed theoretical model based on the optical Bloch equations. The D1 transition of rubidium is a challenging system to analyze theoretically because it contains transitions that are only partially resolved under Doppler broadening. The theoretical model took into account all nearby transitions, the coherence properties of the exciting laser radiation, and the mixing of magnetic sublevels in an external magnetic field and also included averaging over the Doppler profile. Great care was taken to obtain accurate experimental signals and avoid systematic errors. The experimental signals were reproduced very well at each hyperfine transition and over a wide range of laser power densities, beam diameters, and laser detunings from the exact transition frequency. The bright resonance expected at the F_g=1 --> F_e=2 transition of Rb-87 has been observed. A bright resonance was observed at the F_g=2 --> F_e=3 transition of Rb-85, but displaced from the exact position of the transition due to the influence of the nearby F_g=2 --> F_e=2 transition, which is a dark resonance whose contrast is almost two orders of magnitude larger than the contrast of the bright resonance at the F_g=2 --> F_e=3 transition. Even in this very delicate situation, the theoretical model described in detail the experimental signals at different laser detunings.Comment: 11 pages, 9 figure

    Efficient nonlinear room-temperature spin injection from ferromagnets into semiconductors through a modified Schottky barrier

    Full text link
    We suggest a consistent microscopic theory of spin injection from a ferromagnet (FM) into a semiconductor (S). It describes tunneling and emission of electrons through modified FM-S Schottky barrier with an ultrathin heavily doped interfacial S layer . We calculate nonlinear spin-selective properties of such a reverse-biased FM-S junction, its nonlinear I-V characteristic, current saturation, and spin accumulation in S. We show that the spin polarization of current, spin density, and penetration length increase with the total current until saturation. We find conditions for most efficient spin injection, which are opposite to the results of previous works, since the present theory suggests using a lightly doped resistive semiconductor. It is shown that the maximal spin polarizations of current and electrons (spin accumulation) can approach 100% at room temperatures and low current density in a nondegenerate high-resistance semiconductor.Comment: 7 pages, 2 figures; provides detailed comparison with earlier works on spin injectio

    Scattering polarization of hydrogen lines in the presence of turbulent electric fields

    Full text link
    We study the broadband polarization of hydrogen lines produced by scattering of radiation, in the presence of isotropic electric fields. In this paper, we focus on two distinct problems: a) the possibility of detecting the presence of turbulent electric fields by polarimetric methods, and b) the influence of such fields on the polarization due to a macroscopic, deterministic magnetic field. We found that isotropic electric fields decrease the degree of linear polarization in the scattered radiation, with respect to the zero-field case. On the other hand, a distribution of isotropic electric fields superimposed onto a deterministic magnetic field can generate a significant increase of the degree of magnetic-induced, net circular polarization. This phenomenon has important implications for the diagnostics of magnetic fields in plasmas using hydrogen lines, because of the ubiquitous presence of the Holtsmark, microscopic electric field from neighbouring ions. In particular, previous solar magnetographic studies of the Balmer lines of hydrogen may need to be revised because they neglected the effect of turbulent electric fields on the polarization signals. In this work, we give explicit results for the Lyman-alpha and Balmer-alpha lines.Comment: 15 pages, 6 figure

    Scattering polarization of hydrogen lines from electric-induced atomic alignment

    Full text link
    We consider a gas of hydrogen atoms illuminated by a broadband, unpolarized radiation with zero anisotropy. In the absence of external fields, the atomic J-levels are thus isotropically populated. While this condition persists in the presence of a magnetic field, we show instead that electric fields can induce the alignment of those levels. We also show that this electric alignment cannot occur in a two-term model of hydrogen (e.g., if only the Ly-alpha transition is excited), or if the level populations are distributed according to Boltzmann's law.Comment: 10 pages, 4 figures. Accepted by J.Phys.B: At.Mol.Opt.Phy

    Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first principles calculations for copper

    Full text link
    First principles calculations of the Sigma 5 (310)[001] symmetric tilt grain boundary in Cu with Bi, Na, and Ag substitutional impurities provide evidence that in the phenomenon of Bi embrittlement of Cu grain boundaries electronic effects do not play a major role; on the contrary, the embrittlement is mostly a structural or "size" effect. Na is predicted to be nearly as good an embrittler as Bi, whereas Ag does not embrittle the boundary in agreement with experiment. While we reject the prevailing view that "electronic" effects (i.e., charge transfer) are responsible for embrittlement, we do not exclude the role of chemistry. However numerical results show a striking equivalence between the alkali metal Na and the semi metal Bi, small differences being accounted for by their contrasting "size" and "softness" (defined here). In order to separate structural and chemical effects unambiguously if not uniquely, we model the embrittlement process by taking the system of grain boundary and free surfaces through a sequence of precisely defined gedanken processes; each of these representing a putative mechanism. We thereby identify three mechanisms of embrittlement by substitutional impurities, two of which survive in the case of embrittlement or cohesion enhancement by interstitials. Two of the three are purely structural and the third contains both structural and chemical elements that by their very nature cannot be further unravelled. We are able to take the systems we study through each of these stages by explicit computer simulations and assess the contribution of each to the nett reduction in intergranular cohesion. The conclusion we reach is that embrittlement by both Bi and Na is almost exclusively structural in origin; that is, the embrittlement is a size effect.Comment: 13 pages, 5 figures; Accepted in Phys. Rev.

    Atomic correlations in itinerant ferromagnets: quasi-particle bands of nickel

    Full text link
    We measure the band structure of nickel along various high-symmetry lines of the bulk Brillouin zone with angle-resolved photoelectron spectroscopy. The Gutzwiller theory for a nine-band Hubbard model whose tight-binding parameters are obtained from non-magnetic density-functional theory resolves most of the long-standing discrepancies between experiment and theory on nickel. Thereby we support the view of itinerant ferromagnetism as induced by atomic correlations.Comment: 4 page REVTeX 4.0, one figure, one tabl

    Instability of the rhodium magnetic moment as origin of the metamagnetic phase transition in alpha-FeRh

    Full text link
    Based on ab initio total energy calculations we show that two magnetic states of rhodium atoms together with competing ferromagnetic and antiferromagnetic exchange interactions are responsible for a temperature induced metamagnetic phase transition, which experimentally is observed for stoichiometric alpha-FeRh. A first-principle spin-based model allows to reproduce this first-order metamagnetic transition by means of Monte Carlo simulations. Further inclusion of spacial variation of exchange parameters leads to a realistic description of the experimental magneto-volume effects in alpha-FeRh.Comment: 10 pages, 13 figures, accepted for publication in Phys. Rev.

    Magnetic tight-binding and the iron-chromium enthalpy anomaly

    Full text link
    We describe a self consistent magnetic tight-binding theory based in an expansion of the Hohenberg-Kohn density functional to second order, about a non spin polarised reference density. We show how a first order expansion about a density having a trial input magnetic moment leads to the Stoner--Slater rigid band model. We employ a simple set of tight-binding parameters that accurately describes electronic structure and energetics, and show these to be transferable between first row transition metals and their alloys. We make a number of calculations of the electronic structure of dilute Cr impurities in Fe which we compare with results using the local spin density approximation. The rigid band model provides a powerful means for interpreting complex magnetic configurations in alloys; using this approach we are able to advance a simple and readily understood explanation for the observed anomaly in the enthalpy of mixing.Comment: Submitted to Phys Rev
    • …
    corecore