625 research outputs found

    Understanding/unravelling carotenoid excited singlet states.

    Get PDF
    Carotenoids are essential light-harvesting pigments in natural photosynthesis. They absorb in the blue–green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and thus expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet–singlet excitation energy transfer, and carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. The photochemistry and photophysics of carotenoids have often been interpreted by referring to those of simple polyene molecules that do not possess any functional groups. However, this may not always be wise because carotenoids usually have a number of functional groups that induce the variety of photochemical behaviours in them. These differences can also make the interpretation of the singlet excited states of carotenoids very complicated. In this article, we review the properties of the singlet excited states of carotenoids with the aim of producing as coherent a picture as possible of what is currently known and what needs to be learned

    Dynamics of lattice spins as a model of arrhythmia

    Get PDF
    We consider evolution of initial disturbances in spatially extended systems with autonomous rhythmic activity, such as the heart. We consider the case when the activity is stable with respect to very smooth (changing little across the medium) disturbances and construct lattice models for description of not-so-smooth disturbances, in particular, topological defects; these models are modifications of the diffusive XY model. We find that when the activity on each lattice site is very rigid in maintaining its form, the topological defects - vortices or spirals - nucleate a transition to a disordered, turbulent state.Comment: 17 pages, revtex, 3 figure

    Calculation of the Coherent Synchrotron Radiation Impedance from a Wiggler

    Full text link
    Most studies of Coherent Synchrotron Radiation (CSR) have only considered the radiation from independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter KK. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of KK. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies.Comment: 10 pages, 8 figure

    Analysis of a three-component model phase diagram by Catastrophe Theory

    Full text link
    We analyze the thermodynamical potential of a lattice gas model with three components and five parameters using the methods of Catastrophe Theory. We find the highest singularity, which has codimension five, and establish its transversality. Hence the corresponding seven-degree Landau potential, the canonical form Wigwam or A6A_6, constitutes the adequate starting point to study the overall phase diagram of this model.Comment: 16 pages, Latex file, submitted to Phys. Rev.

    Depth-dependent intracortical myelin organization in the living human brain determined by in vivo ultra-high field magnetic resonance imaging

    Get PDF
    Background: Intracortical myelin is a key determinant of neuronal synchrony and plasticity that underpin optimal brain function. Magnetic resonance imaging (MRI) facilitates the examination of intracortical myelin but presents with methodological challenges. Here we describe a whole-brain approach for the in vivo investigation of intracortical myelin in the human brain using ultra-high field MRI. Methods: Twenty-five healthy adults were imaged in a 7 Tesla MRI scanner using diffusion-weighted imaging and a T 1 -weighted sequence optimized for intracortical myelin contrast. Using an automated pipeline, T 1 values were extracted at 20 depth-levels from each of 148 cortical regions. In each cortical region, T 1 values were used to infer myelin concentration and to construct a non-linearity index as a measure the spatial distribution of myelin across the cortical ribbon. The relationship of myelin concentration and the non-linearity index with other neuroanatomical properties were investigated. Five patients with multiple sclerosis were also assessed using the same protocol as positive controls. Results: Intracortical T 1 values decreased between the outer brain surface and the gray-white matter boundary following a slope that showed a slight leveling between 50% and 75% of cortical depth. Higher-order regions in the prefrontal, cingulate and insular cortices, displayed higher non-linearity indices than sensorimotor regions. Across all regions, there was a positive association between T 1 values and non-linearity indices (P < 10 125 ). Both T 1 values (P < 10 125 ) and non-linearity indices (P < 10 1215 ) were associated with cortical thickness. Higher myelin concentration but only in the deepest cortical levels was associated with increased subcortical fractional anisotropy (P = 0.05). Conclusions: We demonstrate the usefulness of an automatic, whole-brain method to perform depth-dependent examination of intracortical myelin organization. The extracted metrics, T 1 values and the non-linearity index, have characteristic patterns across cortical regions, and are associated with thickness and underlying white matter microstructure

    Theory of spiral wave dynamics in weakly excitable media: asymptotic reduction to a kinematic model and applications

    Full text link
    In a weakly excitable medium, characterized by a large threshold stimulus, the free end of an isolated broken plane wave (wave tip) can either rotate (steadily or unsteadily) around a large excitable core, thereby producing a spiral pattern, or retract causing the wave to vanish at boundaries. An asymptotic analysis of spiral motion and retraction is carried out in this weakly excitable large core regime starting from the free-boundary limit of the reaction-diffusion models, valid when the excited region is delimited by a thin interface. The wave description is shown to naturally split between the tip region and a far region that are smoothly matched on an intermediate scale. This separation allows us to rigorously derive an equation of motion for the wave tip, with the large scale motion of the spiral wavefront slaved to the tip. This kinematic description provides both a physical picture and exact predictions for a wide range of wave behavior, including: (i) steady rotation (frequency and core radius), (ii) exact treatment of the meandering instability in the free-boundary limit with the prediction that the frequency of unstable motion is half the primary steady frequency (iii) drift under external actions (external field with application to axisymmetric scroll ring motion in three-dimensions, and spatial or/and time-dependent variation of excitability), and (iv) the dynamics of multi-armed spiral waves with the new prediction that steadily rotating waves with two or more arms are linearly unstable. Numerical simulations of FitzHug-Nagumo kinetics are used to test several aspects of our results. In addition, we discuss the semi-quantitative extension of this theory to finite cores and pinpoint mathematical subtleties related to the thin interface limit of singly diffusive reaction-diffusion models

    Scroll waves in isotropic excitable media : linear instabilities, bifurcations and restabilized states

    Full text link
    Scroll waves are three-dimensional analogs of spiral waves. The linear stability spectrum of untwisted and twisted scroll waves is computed for a two-variable reaction-diffusion model of an excitable medium. Different bands of modes are seen to be unstable in different regions of parameter space. The corresponding bifurcations and bifurcated states are characterized by performing direct numerical simulations. In addition, computations of the adjoint linear stability operator eigenmodes are also performed and serve to obtain a number of matrix elements characterizing the long-wavelength deformations of scroll waves.Comment: 30 pages 16 figures, submitted to Phys. Rev.

    Exact correlation functions of Bethe lattice spin models in external fields

    Full text link
    We develop a transfer matrix method to compute exactly the spin-spin correlation functions of Bethe lattice spin models in the external magnetic field h and for any temperature T. We first compute the correlation function for the most general spin - S Ising model, which contains all possible single-ion and nearest-neighbor pair interactions. This general spin - S Ising model includes the spin-1/2 simple Ising model and the Blume-Emery-Griffiths (BEG) model as special cases. From the spin-spin correlation functions, we obtain functions of correlation length for the simple Ising model and BEG model, which show interesting scaling and divergent behavior as T approaches the critical temperature. Our method to compute exact spin-spin correlation functions may be applied to other Ising-type models on Bethe and Bethe-like lattices.Comment: 19 page
    • …
    corecore