12,161 research outputs found

    Centennial-scale vegetation and North Atlantic Oscillation changes during the Late Holocene in the southern Iberia

    Get PDF
    High-reso CE to lution pollen analysis, charcoal, non-pollen palynomorphs and magnetic susceptibility have been analyzed in the sediment record of a peat bog in Sierra Nevada in southern Iberia. The study of these proxies provided the reconstruction of vegetation, climate, fire and human activity of the last ∼4500 cal yr BP. A progressive trend towards aridification during the late Holocene is observed in this record. This trend is interrupted by millennial- and centennial-scale variability of relatively more humid and arid periods. Arid conditions are recorded between ∼4000 and 3100 cal yr BP, being characterized by a decline in arboreal pollen and with a spike in magnetic susceptibility. This is followed by a relatively humid period from ∼3100 to 1600 cal yr BP, coinciding partially with the Iberian-Roman Humid Period, and is indicated by the increase of Pinus and the decrease in xerophytic taxa. The last 1500 cal yr BP are characterized by several centennial-scale climatic oscillations. Generally arid conditions from ∼450 to 1300 CE, depicted by a decrease in Pinus and an increase in Artemisia, comprise the Dark Ages and the Medieval Climate Anomaly. Since ∼ 1300 to 1850 CE pronounced oscillations occur between relatively humid and arid conditions. Four periods depicted by relatively higher Pinus coinciding with the beginning and end of the Little Ice Age are interrupted by three arid events characterized by an increase in Artemisia. These alternating arid and humid shifts could be explained by centennial-scale changes in the North Atlantic Oscillation and solar activity

    Investigation of HNCO isomers formation in ice mantles by UV and thermal processing: an experimental approach

    Full text link
    Current gas phase models do not account for the abundances of HNCO isomers detected in various environments, suggesting a formation in icy grain mantles. We attempted to study a formation channel of HNCO and its possible isomers by vacuum-UV photoprocessing of interstellar ice analogues containing H2_2O, NH3_3, CO, HCN, CH3_3OH, CH4_4, and N2_2 followed by warm-up, under astrophysically relevant conditions. Only the H2_2O:NH3_3:CO and H2_2O:HCN ice mixtures led to the production of HNCO species. The possible isomerization of HNCO to its higher energy tautomers following irradiation or due to ice warm-up has been scrutinized. The photochemistry and thermal chemistry of H2_2O:NH3_3:CO and H2_2O:HCN ices was simulated using the Interstellar Astrochemistry Chamber (ISAC), a state-of-the-art ultra-high-vacuum setup. The ice was monitored in situ by Fourier transform mid-infrared spectroscopy in transmittance. A quadrupole mass spectrometer (QMS) detected the desorption of the molecules in the gas phase. UV-photoprocessing of H2_2O:NH3_3:CO/H2_2O:HCN ices lead to the formation of OCN−^- as main product in the solid state and a minor amount of HNCO. The second isomer HOCN has been tentatively identified. Despite its low efficiency, the formation of HNCO and the HOCN isomers by UV-photoprocessing of realistic simulated ice mantles, might explain the observed abundances of these species in PDRs, hot cores, and dark clouds

    Vitis caribaea as a source of resistance to Pierce's disease in breeding grapes for the tropics

    Get PDF
    A native Costarican vine, Vitis caribaea, was found growing unaffected by Pierce's disease (PD; Xylella fastidiosa) in the forests surrounding a dying V. vinifera plantation. V. caribaea was tested by inoculation, isolation, ELISA and DNA hybridization and in all cases no bacteria were detected. It was decided that V. caribaea or Agrá (its Indian name) is resistant or at least highly tolerant to PD. Crosses of V. vinifera and V. caribaea were made and no compatibility barriers were found, germination of the hybrids seeds was high and a high percentage of fertile plants were produced. Many hybrids were made and planted in the field to test them for resistance to PD. Since some of the F1 hybrids do transmit resistance when backcrossed to V. vinifera, resistance must be determined by dominant genes. Some F1 hybrids, although apparently resistant themselves, are either not transmitting resistance or are doing so in a reduced proportion. Several hybrids developed at the University of Florida were tested, one of these, F 5-8, has led to the establishment of the first successful vineyard in Costa Rica
    • …
    corecore