11,173 research outputs found

    Charge and spin state readout of a double quantum dot coupled to a resonator

    Full text link
    State readout is a key requirement for a quantum computer. For semiconductor-based qubit devices it is usually accomplished using a separate mesoscopic electrometer. Here we demonstrate a simple detection scheme in which a radio-frequency resonant circuit coupled to a semiconductor double quantum dot is used to probe its charge and spin states. These results demonstrate a new non-invasive technique for measuring charge and spin states in quantum dot systems without requiring a separate mesoscopic detector

    Giant Fluctuations of Coulomb Drag in a Bilayer System

    Full text link
    We have observed reproducible fluctuations of the Coulomb drag, both as a function of magnetic field and electron concentration, which are a manifestation of quantum interference of electrons in the layers. At low temperatures the fluctuations exceed the average drag, giving rise to random changes of the sign of the drag. The fluctuations are found to be much larger than previously expected, and we propose a model which explains their enhancement by considering fluctuations of local electron properties.Comment: 10 pages, 4 figure

    Sensitivity of the magnetic state of a spin lattice on itinerant electron orbital phase

    Full text link
    Spatially extended localized spins can interact via indirect exchange interaction through Friedel oscillations in the Fermi sea. In arrays of localized spins such interaction can lead to a magnetically ordered phase. Without external magnetic field such a phase is well understood via a "two-impurity" Kondo model. Here we employ non-equilibrium transport spectroscopy to investigate the role of the orbital phase of conduction electrons on the magnetic state of a spin lattice. We show experimentally, that even tiniest perpendicular magnetic field can influence the magnitude of the inter-spin magnetic exchange.Comment: To be published in PhysicaE EP2DS proceedin

    Disentangling surface and bulk transport in topological-insulator pp-nn junctions

    Get PDF
    By combining nn-type Bi2Te3\mathrm{Bi_2Te_3} and pp-type Sb2Te3\mathrm{Sb_2Te_3} topological insulators, vertically stacked pp-nn junctions can be formed, allowing to position the Fermi level into the bulk band gap and also tune between nn- and pp-type surface carriers. Here we use low-temperature magnetotransport measurements to probe the surface and bulk transport modes in a range of vertical Bi2Te3/Sb2Te3\mathrm{Bi_2Te_3/Sb_2Te_3} heterostructures with varying relative thicknesses of the top and bottom layers. With increasing thickness of the Sb2Te3\mathrm{Sb_2Te_3} layer we observe a change from nn- to pp-type behavior via a specific thickness where the Hall signal is immeasurable. Assuming that the the bulk and surface states contribute in parallel, we can calculate and reproduce the dependence of the Hall and longitudinal components of resistivity on the film thickness. This highlights the role played by the bulk conduction channels which, importantly, cannot be probed using surface sensitive spectroscopic techniques. Our calculations are then buttressed by a semi-classical Boltzmann transport theory which rigorously shows the vanishing of the Hall signal. Our results provide crucial experimental and theoretical insights into the relative roles of the surface and bulk in the vertical topological pp-nn junctions.Comment: 11 pages, 5 figure

    Experimental position-time entanglement with degenerate single photons

    Full text link
    We report an experiment in which two-photon interference occurs between degenerate single photons that never meet. The two photons travel in opposite directions through our fibre-optic interferometer and interference occurs when the photons reach two different, spatially separated, 2-by-2 couplers at the same time. We show that this experiment is analogous to the conventional Franson-type entanglement experiment where the photons are entangled in position and time. We measure wavefunction overlaps for the two photons as high as 94 Ā±\pm 3%.Comment: Updated to published version, new fig. 4., corrected typo
    • ā€¦
    corecore