9,008 research outputs found
Density scaling in viscous liquids: From relaxation times to four-point susceptibilities
We present numerical calculations of a four-point dynamic susceptibility,
chi_4(t), for the Kob-Andersen Lennard-Jones mixture as a function of
temperature T and density rho. Over a relevant range of T and rho, the full
t-dependence of chi_4(t) and thus the maximum in chi_4(t), which is
proportional to the dynamic correlation volume, are invariant for state points
for which the scaling variable rho^gamma/T is constant. The value of the
material constant gamma is the same as that which superposes the relaxation
time, tau, of the system versus rho^gamma/T. Thus, the dynamic correlation
volume is directly related to tau for any thermodynamic condition in the regime
where density scaling holds. Finally, we examine the conditions under which the
density scaling properties are related to the existence of strong correlations
between pressure and energy fluctuations.Comment: 5 pages, 4 figures, updated reference
Distributions of inherent structure energies during aging
We perform extensive simulations of a binary mixture Lennard-Jones system
subjected to a temperature jump in order to study the time evolution of
fluctuations during aging. Analyzing data from 1500 different aging
realizations, we calculate distributions of inherent structure energies for
different aging times and contrast them with equilibrium. We find that the
distributions initially become narrower and then widen as the system
equilibrates. For deep quenches, fluctuations in the glassy system differ
significantly from those observed in equilibrium. Simulation results are
partially captured by theoretical predictions only when the final temperature
is higher than the mode coupling temperature.Comment: 5 pages, 4 figure
Changing player behaviour in sport during the COVID-19 pandemic: Shake on it?
To prevent the spread of infection during matches and training activities is a major challenge facing all sports returning from the enforced COVID-19 shutdown. During training and matches, rugby league players make contact with others which can result in SARS-CoV-2 virus transmission. While these interactions characterise the appeal of the game, a number of them can be avoided, including shaking hands and conversing after the match. This paper presents a framework underpinned by behavioural science (capability, opportunity, motivation and behaviour model, COM-B) to support stakeholders in helping players adopt new social distance norms and behaviours. This framework helps to ensure the players have the capability, opportunity, and motivation to adopt new COVID-19 risk minimising behaviours, which they will need to commit to 100%
Kovacs effects in an aging molecular liquid
We study by means of molecular dynamics simulations the aging behavior of a
molecular model of ortho-terphenyl. We find evidence of a a non-monotonic
evolution of the volume during an isothermal-isobaric equilibration process, a
phenomenon known in polymeric systems as Kovacs effect. We characterize this
phenomenology in terms of landscape properties, providing evidence that, far
from equilibrium, the system explores region of the potential energy landscape
distinct from the one explored in thermal equilibrium. We discuss the relevance
of our findings for the present understanding of the thermodynamics of the
glass state.Comment: RevTeX 4, 4 pages, 5 eps figure
On the dependence of the avalanche angle on the granular layer thickness
A layer of sand of thickness h flows down a rough surface if the inclination
is larger than some threshold value theta which decreases with h. A tentative
microscopic model for the dependence of theta with h is proposed for rigid
frictional grains, based on the following hypothesis: (i) a horizontal layer of
sand has some coordination z larger than a critical value z_c where mechanical
stability is lost (ii) as the tilt angle is increased, the configurations
visited present a growing proportion $_s of sliding contacts. Instability with
respect to flow occurs when z-z_s=z_c. This criterion leads to a prediction for
theta(h) in good agreement with empirical observations.Comment: 6 pages, 2 figure
Dielectric study of the glass transition: correlation with calorimetric data
The glass transition in amorphous poly(ethylene terephthalate) is studied by
thermally stimulated depolarization currents (TSDC) and differential scanning
calorimetry (DSC). The ability of TSDC to decompose a distributed relaxation,
as the glass transition, into its elementary components is demonstrated. Two
polarization techniques, windows polarization (WP) and non-isothermal windows
polarization (NIW), are employed to assess the influence of thermal history in
the results. The Tool-Narayanaswami-Moynihan (TNM) model has been used to fit
the TSDC spectra. The most important contributions to the relaxation comes from
modes with non-linearity (x) around 0.7. Activation energies yield by this
model are located around 1eV for polarization temperature (Tp) below 50C and
they raise up to values higher than 8eV as Tp increases (up to 80C). There are
few differences between results obtained with WP and NIW but, nonetheless,
these are discussed. The obtained kinetic parameters are tested against DSC
results in several conditions. Calculated DSC curves at several cooling and
heating rates can reproduce qualitatively experimental DSC results. These
results also demonstrate that modelization of the non-equilibrium kinetics
involved in TSDC spectroscopy is a useful experimental tool for glass
transition studies in polar polymers.Comment: 13 pages, 2 tables, 10 figures; minor change
The consequence of excess configurational entropy on fragility: the case of a polymer/oligomer blend
By taking advantage of the molecular weight dependence of the glass
transition of polymers and their ability to form perfectly miscible blends, we
propose a way to modify the fragility of a system, from fragile to strong,
keeping the same glass properties, i.e. vibrational density of states,
mean-square displacement and local structure. Both slow and fast dynamics are
investigated by calorimetry and neutron scattering in an athermal
polystyrene/oligomer blend, and compared to those of a pure 17-mer polystyrene
considered to be a reference, of same Tg. Whereas the blend and the pure 17-mer
have the same heat capacity in the glass and in the liquid, their fragilities
differ strongly. This difference in fragility is related to an extra
configurational entropy created by the mixing process and acting at a scale
much larger than the interchain distance, without affecting the fast dynamics
and the structure of the glass
Self-diffusion in binary blends of cyclic and linear polymers
A lattice model is used to estimate the self-diffusivity of entangled cyclic
and linear polymers in blends of varying compositions. To interpret simulation
results, we suggest a minimal model based on the physical idea that constraints
imposed on a cyclic polymer by infiltrating linear chains have to be released,
before it can diffuse beyond a radius of gyration. Both, the simulation, and
recently reported experimental data on entangled DNA solutions support the
simple model over a wide range of blend compositions, concentrations, and
molecular weights.Comment: 10 pages, 2 figure
Religion and religious education : comparing and contrasting pupilsâ and teachersâ views in an English school
This publication builds on and develops the English findings of the qualitative study of European teenagersâ perspectives on religion and religious education (Knauth et al. 2008), part of âReligion in Education: A contribution to dialogue or a factor of conflict in transforming societies of European countries?â (REDCo) project. It uses data gathered from 27 pupils, aged 15-16, from a school in a multicultural Northern town in England and compares those findings with data gathered from ten teachers in the humanities faculty of the same school, collected during research for the Warwick REDCo Community of Practice. Comparisons are drawn between the teachersâ and their pupilsâ attitudes and values using the same structure as the European study: personal views and experiences of religion, the social dimension of religion, and religious education in school. The discussion offers an analysis of the similarities and differences in worldviews and beliefs which emerged. These include religious commitment/observance differences between the mainly Muslim-heritage pupils and their mainly non-practising Christian-heritage teachers. The research should inform the ways in which the statutory duties to promote community cohesion and equalities can be implemented in schools. It should also facilitate intercultural and interreligious understanding between teachers and the pupils from different ethnic and religious backgrounds
- âŠ