226 research outputs found
Anharmonic parametric excitation in optical lattices
We study both experimentally and theoretically the losses induced by
parametric excitation in far-off-resonance optical lattices. The atoms confined
in a 1D sinusoidal lattice present an excitation spectrum and dynamics
substantially different from those expected for a harmonic potential. We
develop a model based on the actual atomic Hamiltonian in the lattice and we
introduce semiempirically a broadening of the width of lattice energy bands
which can physically arise from inhomogeneities and fluctuations of the
lattice, and also from atomic collisions. The position and strength of the
parametric resonances and the evolution of the number of trapped atoms are
satisfactorily described by our model.Comment: 7 pages, 5 figure
Expansion of a Fermi gas interacting with a Bose-Einstein condensate
We study the expansion of an atomic Fermi gas interacting attractively with a
Bose-Einstein condensate. We find that the interspecies interaction affects
dramatically both the expansion of the Fermi gas and the spatial distribution
of the cloud in trap. We observe indeed a slower evolution of the
radial-to-axial aspect ratio which reveals the importance of the mutual
attraction between the two samples during the first phase of the expansion. For
large atom numbers, we also observe a bimodal momentum distribution of the
Fermi gas, which reflects directly the distribution of the mixture in trap.
This effect allows us to extract information on the dynamics of the system at
the collapse.Comment: 4 pages, 4 figure
Control of the interaction in a Fermi-Bose mixture
We control the interspecies interaction in a two-species atomic quantum
mixture by tuning the magnetic field at a Feshbach resonance. The mixture is
composed by fermionic 40K and bosonic 87Rb. We observe effects of the large
attractive and repulsive interaction energy across the resonance, such as
collapse or a reduced spatial overlap of the mixture, and we accurately locate
the resonance position and width. Understanding and controlling instabilities
in this mixture opens the way to a variety of applications, including formation
of heteronuclear molecular quantum gases.Comment: 5 Page
39-K Bose-Einstein condensate with tunable interactions
We produce a Bose-Einstein condensate of 39-K atoms. Condensation of this
species with naturally small and negative scattering length is achieved by a
combination of sympathetic cooling with 87-Rb and direct evaporation,
exploiting the magnetic tuning of both inter- and intra-species interactions at
Feshbach resonances. We explore tunability of the self-interactions by studying
the expansion and the stability of the condensate. We find that a 39-K
condensate is interesting for future experiments requiring a weakly interacting
Bose gas.Comment: 5 page
Radio Frequency Selective Addressing of Localized Particles in a Periodic Potential
We study the localization and addressability of ultra cold atoms in a
combined parabolic and periodic potential. Such a potential supports the
existence of localized stationary states and we show that using a radio
frequency field allows to selectively address the atoms in these states. This
method is used to measure the energy and momentum distribution of the atoms in
the localized states. We also discuss possible extensions of this scheme to
address and manipulate particles in single lattice sites.Comment: 4 pages, 4 figure
Exploring the ferromagnetic behaviour of a repulsive Fermi gas via spin dynamics
Ferromagnetism is a manifestation of strong repulsive interactions between
itinerant fermions in condensed matter. Whether short-ranged repulsion alone is
sufficient to stabilize ferromagnetic correlations in the absence of other
effects, like peculiar band dispersions or orbital couplings, is however
unclear. Here, we investigate ferromagnetism in the minimal framework of an
ultracold Fermi gas with short-range repulsive interactions tuned via a
Feshbach resonance. While fermion pairing characterises the ground state, our
experiments provide signatures suggestive of a metastable Stoner-like
ferromagnetic phase supported by strong repulsion in excited scattering states.
We probe the collective spin response of a two-spin mixture engineered in a
magnetic domain-wall-like configuration, and reveal a substantial increase of
spin susceptibility while approaching a critical repulsion strength. Beyond
this value, we observe the emergence of a time-window of domain immiscibility,
indicating the metastability of the initial ferromagnetic state. Our findings
establish an important connection between dynamical and equilibrium properties
of strongly-correlated Fermi gases, pointing to the existence of a
ferromagnetic instability.Comment: 8 + 17 pages, 4 + 8 figures, 44 + 19 reference
Production of a Fermi gas of atoms in an optical lattice
We prepare a degenerate Fermi gas of potassium atoms by sympathetic cooling
with rubidium atoms in a one-dimensional optical lattice. In a tight lattice we
observe a change of the density of states of the system, which is a signature
of quasi two dimensional confinement. We also find that the dipolar
oscillations of the Fermi gas along the tight lattice are almost completely
suppressed.Comment: 4 pages, 4 figures, revised versio
- …