10,110 research outputs found
Radiative and Collisional Jet Energy Loss in a Quark-Gluon Plasma
We calculate radiative and collisional energy loss of hard partons traversing
the quark-gluon plasma created at RHIC and compare the respective size of these
contributions. We employ the AMY formalism for radiative energy loss and
include additionally energy loss by elastic collisions. Our treatment of both
processes is complete at leading order in the coupling, and accounts for the
probabilistic nature of jet energy loss. We find that a solution of the
Fokker-Planck equation for the probability density distributions of partons is
necessary for a complete calculation of the nuclear modification factor
for pion production in heavy ion collisions. It is found that the
magnitude of is sensitive to the inclusion of both collisional and
radiative energy loss, while the average energy is less affected by the
addition of collisional contributions. We present a calculation of for
at RHIC, combining our energy loss formalism with a relativistic
(3+1)-dimensional hydrodynamic description of the thermalized medium.Comment: 4 pages, 4 figures, contributed to Quark Matter 2008, Jaipur, Indi
Radiative and Collisional Energy Loss, and Photon-Tagged Jets at RHIC
The suppression of single jets at high transverse momenta in a quark-gluon
plasma is studied at RHIC energies, and the additional information provided by
a photon tag is included. The energy loss of hard jets traversing through the
medium is evaluated in the AMY formalism, by consistently taking into account
the contributions from radiative events and from elastic collisions at leading
order in the coupling. The strongly-interacting medium in these collisions is
modelled with (3+1)-dimensional ideal relativistic hydrodynamics. Putting these
ingredients together with a complete set of photon-production processes, we
present a calculation of the nuclear modification of single jets and
photon-tagged jets at RHIC.Comment: 4 pages, 4 figures, contributed to the 3rd International Conference
on Hard and Electro-Magnetic Probes of High-Energy Nuclear Collisions (Hard
Probes 2008), typos corrected, published versio
Performance of a prototype active veto system using liquid scintillator for a dark matter search experiment
We report the performance of an active veto system using a liquid
scintillator with NaI(Tl) crystals for use in a dark matter search experiment.
When a NaI(Tl) crystal is immersed in the prototype detector, the detector tags
48% of the internal K-40 background in the 0-10 keV energy region. We also
determined the tagging efficiency for events at 6-20 keV as 26.5 +/- 1.7% of
the total events, which corresponds to 0.76 +/- 0.04 events/keV/kg/day.
According to a simulation, approximately 60% of the background events from U,
Th, and K radioisotopes in photomultiplier tubes are tagged at energies of 0-10
keV. Full shielding with a 40-cm-thick liquid scintillator can increase the
tagging efficiency for both the internal K-40 and external background to
approximately 80%.Comment: Submitted to Nuclear Instruments and Methods in Physics Research
Section
Quantum and frustration effects on fluctuations of the inverse compressibility in two-dimensional Coulomb glasses
We consider interacting electrons in a two-dimensional quantum Coulomb glass
and investigate by means of the Hartree-Fock approximation the combined effects
of the electron-electron interaction and the transverse magnetic field on
fluctuations of the inverse compressibility. Preceding systematic study of the
system in the absence of the magnetic field identifies the source of the
fluctuations, interplay of disorder and interaction, and effects of hopping.
Revealed in sufficiently clean samples with strong interactions is an unusual
right-biased distribution of the inverse compressibility, which is neither of
the Gaussian nor of the Wigner-Dyson type. While in most cases weak magnetic
fields tend to suppress fluctuations, in relatively clean samples with weak
interactions fluctuations are found to grow with the magnetic field. This is
attributed to the localization properties of the electron states, which may be
measured by the participation ratio and the inverse participation number. It is
also observed that at the frustration where the Fermi level is degenerate,
localization or modulation of electrons is enhanced, raising fluctuations.
Strong frustration in general suppresses effects of the interaction on the
inverse compressibility and on the configuration of electrons.Comment: 15 pages, 18 figures, To appear in Phys. Rev.
Energy Loss of Leading Hadrons and Direct Photon production in Evolving Quark-Gluon Plasma
We calculate the nuclear modification factor of neutral pions and the photon
yield at high p_T in central Au-Au collisions at RHIC (\sqrt{s}=200 GeV) and
Pb-Pb collisions at the LHC (\sqrt{s}=5500 GeV). A leading-order accurate
treatment of jet energy loss in the medium has been convolved with a physical
description of the initial spatial distribution of jets and a (1+1) dimensional
expansion. We reproduce the nuclear modification factor of pion R_{AA} at RHIC,
assuming an initial temperature T_i=370 MeV and a formation time \tau_i=0.26
fm/c, corresponding to dN/dy=1260. The resulting suppression depends on the
particle rapidity density dN/dy but weakly on the initial temperature. The jet
energy loss treatment is also included in the calculation of high p_T photons.
Photons coming from primordial hard N-N scattering are the dominant
contribution at RHIC for p_T > 5 GeV, while at the LHC, the range 8<p_T<14 GeV
is dominated by jet-photon conversion in the plasma.Comment: 21 pages, 16 figures. Discussions and references added. New figure
includind photon dat
- …