10,110 research outputs found

    Radiative and Collisional Jet Energy Loss in a Quark-Gluon Plasma

    Full text link
    We calculate radiative and collisional energy loss of hard partons traversing the quark-gluon plasma created at RHIC and compare the respective size of these contributions. We employ the AMY formalism for radiative energy loss and include additionally energy loss by elastic collisions. Our treatment of both processes is complete at leading order in the coupling, and accounts for the probabilistic nature of jet energy loss. We find that a solution of the Fokker-Planck equation for the probability density distributions of partons is necessary for a complete calculation of the nuclear modification factor RAAR_{AA} for pion production in heavy ion collisions. It is found that the magnitude of RAAR_{AA} is sensitive to the inclusion of both collisional and radiative energy loss, while the average energy is less affected by the addition of collisional contributions. We present a calculation of RAAR_{AA} for π0\pi^0 at RHIC, combining our energy loss formalism with a relativistic (3+1)-dimensional hydrodynamic description of the thermalized medium.Comment: 4 pages, 4 figures, contributed to Quark Matter 2008, Jaipur, Indi

    Radiative and Collisional Energy Loss, and Photon-Tagged Jets at RHIC

    Full text link
    The suppression of single jets at high transverse momenta in a quark-gluon plasma is studied at RHIC energies, and the additional information provided by a photon tag is included. The energy loss of hard jets traversing through the medium is evaluated in the AMY formalism, by consistently taking into account the contributions from radiative events and from elastic collisions at leading order in the coupling. The strongly-interacting medium in these collisions is modelled with (3+1)-dimensional ideal relativistic hydrodynamics. Putting these ingredients together with a complete set of photon-production processes, we present a calculation of the nuclear modification of single jets and photon-tagged jets at RHIC.Comment: 4 pages, 4 figures, contributed to the 3rd International Conference on Hard and Electro-Magnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2008), typos corrected, published versio

    Performance of a prototype active veto system using liquid scintillator for a dark matter search experiment

    Full text link
    We report the performance of an active veto system using a liquid scintillator with NaI(Tl) crystals for use in a dark matter search experiment. When a NaI(Tl) crystal is immersed in the prototype detector, the detector tags 48% of the internal K-40 background in the 0-10 keV energy region. We also determined the tagging efficiency for events at 6-20 keV as 26.5 +/- 1.7% of the total events, which corresponds to 0.76 +/- 0.04 events/keV/kg/day. According to a simulation, approximately 60% of the background events from U, Th, and K radioisotopes in photomultiplier tubes are tagged at energies of 0-10 keV. Full shielding with a 40-cm-thick liquid scintillator can increase the tagging efficiency for both the internal K-40 and external background to approximately 80%.Comment: Submitted to Nuclear Instruments and Methods in Physics Research Section

    Quantum and frustration effects on fluctuations of the inverse compressibility in two-dimensional Coulomb glasses

    Full text link
    We consider interacting electrons in a two-dimensional quantum Coulomb glass and investigate by means of the Hartree-Fock approximation the combined effects of the electron-electron interaction and the transverse magnetic field on fluctuations of the inverse compressibility. Preceding systematic study of the system in the absence of the magnetic field identifies the source of the fluctuations, interplay of disorder and interaction, and effects of hopping. Revealed in sufficiently clean samples with strong interactions is an unusual right-biased distribution of the inverse compressibility, which is neither of the Gaussian nor of the Wigner-Dyson type. While in most cases weak magnetic fields tend to suppress fluctuations, in relatively clean samples with weak interactions fluctuations are found to grow with the magnetic field. This is attributed to the localization properties of the electron states, which may be measured by the participation ratio and the inverse participation number. It is also observed that at the frustration where the Fermi level is degenerate, localization or modulation of electrons is enhanced, raising fluctuations. Strong frustration in general suppresses effects of the interaction on the inverse compressibility and on the configuration of electrons.Comment: 15 pages, 18 figures, To appear in Phys. Rev.

    Energy Loss of Leading Hadrons and Direct Photon production in Evolving Quark-Gluon Plasma

    Full text link
    We calculate the nuclear modification factor of neutral pions and the photon yield at high p_T in central Au-Au collisions at RHIC (\sqrt{s}=200 GeV) and Pb-Pb collisions at the LHC (\sqrt{s}=5500 GeV). A leading-order accurate treatment of jet energy loss in the medium has been convolved with a physical description of the initial spatial distribution of jets and a (1+1) dimensional expansion. We reproduce the nuclear modification factor of pion R_{AA} at RHIC, assuming an initial temperature T_i=370 MeV and a formation time \tau_i=0.26 fm/c, corresponding to dN/dy=1260. The resulting suppression depends on the particle rapidity density dN/dy but weakly on the initial temperature. The jet energy loss treatment is also included in the calculation of high p_T photons. Photons coming from primordial hard N-N scattering are the dominant contribution at RHIC for p_T > 5 GeV, while at the LHC, the range 8<p_T<14 GeV is dominated by jet-photon conversion in the plasma.Comment: 21 pages, 16 figures. Discussions and references added. New figure includind photon dat
    • …
    corecore