130,254 research outputs found
Vacuum polarization for neutral particles in 2+1 dimensions
In 2+1 dimensions there exists a duality between a charged Dirac particle
coupled minimally to a background vector potential and a neutral one coupled
nonminimally to a background electromagnetic field strength. A constant uniform
background electric current induces in the vacuum of the neutral particle a
fermion current which is proportional to the background one. A background
electromagnetic plane wave induces no current in the vacuum. For constant but
nonuniform background electric charge, known results for charged particles can
be translated to give the induced fermion number. Some new examples with
infinite background electric charge are presented. The induced spin and total
angular momentum are also discussed.Comment: REVTeX, 7 pages, no figur
First Lattice Study of the - Transition Form Factors
Experiments at Jefferson Laboratory, MIT-Bates, LEGS, Mainz, Bonn, GRAAL, and
Spring-8 offer new opportunities to understand in detail how nucleon resonance
() properties emerge from the nonperturbative aspects of QCD. Preliminary
data from CLAS collaboration, which cover a large range of photon virtuality
show interesting behavior with respect to dependence: in the region
, both the transverse amplitude, , and the
longitudinal amplitude, , decrease rapidly. In this work, we
attempt to use first-principles lattice QCD (for the first time) to provide a
model-independent study of the Roper-nucleon transition form factor.Comment: 4 pages, 2 figures, double colum
Quantitative comparisons of type 3 radio burst intensity and fast electron flux at 1 AU
The flux of fast solar electrons and the intensity of the type 111 radio emission generated by these particles were compared at one AU. Two regimes were found in the generation of type 111 radiation: one where the radio intensity is linearly proportional to the electron flux, and another, which occurs above a threshold electron flux, where the radio intensity is approximately proportional to the 2.4 power of the electron flux. This threshold appears to reflect a transition to a different emission mechanism
Determination of the Joint Confidence Region of Optimal Operating Conditions in Robust Design by Bootstrap Technique
Robust design has been widely recognized as a leading method in reducing
variability and improving quality. Most of the engineering statistics
literature mainly focuses on finding "point estimates" of the optimum operating
conditions for robust design. Various procedures for calculating point
estimates of the optimum operating conditions are considered. Although this
point estimation procedure is important for continuous quality improvement, the
immediate question is "how accurate are these optimum operating conditions?"
The answer for this is to consider interval estimation for a single variable or
joint confidence regions for multiple variables.
In this paper, with the help of the bootstrap technique, we develop
procedures for obtaining joint "confidence regions" for the optimum operating
conditions. Two different procedures using Bonferroni and multivariate normal
approximation are introduced. The proposed methods are illustrated and
substantiated using a numerical example.Comment: Two tables, Three figure
Two-dimensional matrix algorithm using detrended fluctuation analysis to distinguish Burkitt and diffuse large B-cell lymphoma
Copyright © 2012 Rong-Guan Yeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.A detrended fluctuation analysis (DFA) method is applied to image analysis. The 2-dimensional (2D) DFA algorithms is proposed
for recharacterizing images of lymph sections. Due to Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), there
is a significant different 5-year survival rates after multiagent chemotherapy. Therefore, distinguishing the difference between BL
and DLBCL is very important. In this study, eighteen BL images were classified as group A, which have one to five cytogenetic
changes. Ten BL images were classified as group B, which have more than five cytogenetic changes. Both groups A and B BLs are
aggressive lymphomas, which grow very fast and require more intensive chemotherapy. Finally, ten DLBCL images were classified
as group C. The short-term correlation exponent α1 values of DFA of groups A, B, and C were 0.370 ± 0.033, 0.382 ± 0.022, and
0.435 ± 0.053, respectively. It was found that α1 value of BL image was significantly lower (P < 0.05) than DLBCL. However, there
is no difference between the groups A and B BLs. Hence, it can be concluded that α1 value based on DFA statistics concept can
clearly distinguish BL and DLBCL image.National Science Council (NSC) of Taiwan the Center for Dynamical Biomarkers and
Translational Medicine, National Central University, Taiwan (also sponsored by National Science Council)
Spectrophotovoltaic orbital power generation
A system with 1000 : 1 concentration ratio is defined, using a cassegrain telescope as the first stage concentration (270 x) and compound parabolic concentrators (CPC) for the second stage concentration of 4.7 x for each spectral band. Using reported state of the art (S.O.A.) solar cells device parameters and considering structural losses due to optics and beamsplitters, the efficiencies of one to four cell systems were calculated with efficiencies varying from approximately 22% to 30%. Taking into account cost of the optics, beamsplitter, radiator, and the cost of developing new cells the most cost effective system is the GaAs/Si system
Scattering by a contact potential in three and lower dimensions
We consider the scattering of nonrelativistic particles in three dimensions
by a contact potential which is defined
as the limit of . It is
surprising that it gives a nonvanishing cross section when and
. When the contact potential is approached by a spherical square
well potential instead of the above spherical shell one, one obtains basically
the same result except that the parameter that gives a nonvanishing
cross section is different. Similar problems in two and one dimensions are
studied and results of the same nature are obtained.Comment: REVTeX, 9 pages, no figur
Time evolution, cyclic solutions and geometric phases for general spin in an arbitrarily varying magnetic field
A neutral particle with general spin and magnetic moment moving in an
arbitrarily varying magnetic field is studied. The time evolution operator for
the Schr\"odinger equation can be obtained if one can find a unit vector that
satisfies the equation obeyed by the mean of the spin operator. There exist at
least cyclic solutions in any time interval. Some particular time
interval may exist in which all solutions are cyclic. The nonadiabatic
geometric phase for cyclic solutions generally contains extra terms in addition
to the familiar one that is proportional to the solid angle subtended by the
closed trace of the spin vector.Comment: revtex4, 8 pages, no figur
Eccentricity Evolution of Extrasolar Multiple Planetary Systems due to the Depletion of Nascent Protostellar Disks
Most extrasolar planets are observed to have eccentricities much larger than
those in the solar system. Some of these planets have sibling planets, with
comparable masses, orbiting around the same host stars. In these multiple
planetary systems, eccentricity is modulated by the planets' mutual secular
interaction as a consequence of angular momentum exchange between them. For
mature planets, the eigenfrequencies of this modulation are determined by their
mass and semi-major axis ratios. But, prior to the disk depletion, self gravity
of the planets' nascent disks dominates the precession eigenfrequencies. We
examine here the initial evolution of young planets' eccentricity due to the
apsidal libration or circulation induced by both the secular interaction
between them and the self gravity of their nascent disks. We show that as the
latter effect declines adiabatically with disk depletion, the modulation
amplitude of the planets' relative phase of periapse is approximately invariant
despite the time-asymmetrical exchange of angular momentum between planets.
However, as the young planets' orbits pass through a state of secular
resonance, their mean eccentricities undergo systematic quantitative changes.
For applications, we analyze the eccentricity evolution of planets around
Upsilon Andromedae and HD168443 during the epoch of protostellar disk
depletion. We find that the disk depletion can change the planets' eccentricity
ratio. However, the relatively large amplitude of the planets' eccentricity
cannot be excited if all the planets had small initial eccentricities.Comment: 50 pages including 11 figures, submitted to Ap
- …
