68,006 research outputs found
Effective potentials for atom-atom interaction at low temperatures
We discuss the concept and design of effective atom-atom potentials that
accurately describe any physical processes involving only states around the
threshold. The existence of such potentials gives hope to a quantitative, and
systematic, understanding of quantum few-atom and quantum many-atom systems at
relatively low temperatures.Comment: 4 pages, 4 figure
Close Pairs as Proxies for Galaxy Cluster Mergers
Galaxy cluster merger statistics are an important component in understanding
the formation of large-scale structure. Unfortunately, it is difficult to study
merger properties and evolution directly because the identification of cluster
mergers in observations is problematic. We use large N-body simulations to
study the statistical properties of massive halo mergers, specifically
investigating the utility of close halo pairs as proxies for mergers. We
examine the relationship between pairs and mergers for a wide range of merger
timescales, halo masses, and redshifts (0<z<1). We also quantify the utility of
pairs in measuring merger bias. While pairs at very small separations will
reliably merge, these constitute a small fraction of the total merger
population. Thus, pairs do not provide a reliable direct proxy to the total
merger population. We do find an intriguing universality in the relation
between close pairs and mergers, which in principle could allow for an estimate
of the statistical merger rate from the pair fraction within a scaled
separation, but including the effects of redshift space distortions strongly
degrades this relation. We find similar behavior for galaxy-mass halos, making
our results applicable to field galaxy mergers at high redshift. We investigate
how the halo merger rate can be statistically described by the halo mass
function via the merger kernel (coagulation), finding an interesting
environmental dependence of merging: halos within the mass resolution of our
simulations merge less efficiently in overdense environments. Specifically,
halo pairs with separations less than a few Mpc/h are more likely to merge in
underdense environments; at larger separations, pairs are more likely to merge
in overdense environments.Comment: 12 pages, 9 figures; Accepted for publication in ApJ. Significant
additions to text and two figures changed. Added new findings on the
universality of pair mergers and added analysis of the effect of FoF linking
length on halo merger
On-chip spectroscopy with thermally-tuned high-Q photonic crystal cavities
Spectroscopic methods are a sensitive way to determine the chemical
composition of potentially hazardous materials. Here, we demonstrate that
thermally-tuned high-Q photonic crystal cavities can be used as a compact
high-resolution on-chip spectrometer. We have used such a chip-scale
spectrometer to measure the absorption spectra of both acetylene and hydrogen
cyanide in the 1550 nm spectral band, and show that we can discriminate between
the two chemical species even though the two materials have spectral features
in the same spectral region. Our results pave the way for the development of
chip-size chemical sensors that can detect toxic substances
Classifying Crises-Information Relevancy with Semantics
Social media platforms have become key portals for sharing and consuming information during crisis situations. However, humanitarian organisations and affected communities often struggle to sieve through the large volumes of data that are typically shared on such platforms during crises to determine which posts are truly relevant to the crisis, and which are not. Previous work on automatically classifying crisis information was mostly focused on using statistical features. However,
such approaches tend to be inappropriate when processing data on a type of crisis that the model was not trained on, such as processing information about a train crash, whereas the classifier was trained on floods, earthquakes, and typhoons. In such cases, the model will need to be retrained, which is costly and time-consuming. In this paper, we explore the impact of semantics in classifying Twitter posts across same, and different, types of crises. We experiment with 26 crisis events, using a hybrid system that combines statistical features with various semantic features extracted from external knowledge bases. We show that adding semantic features has no noticeable benefit over statistical features when classifying same-type crises, whereas it enhances the classifier performance by up to 7.2% when classifying information about a new type of crisis
Non-equilibrium umbrella sampling applied to force spectroscopy of soft matter
Physical systems often respond on a timescale which is longer than that of the measurement. This is particularly true in soft matter where direct experimental measurement, for example in force spectroscopy, drives the soft system out of equilibrium and provides a non-equilibrium measure. Here we demonstrate experimentally for the first time that equilibrium physical quantities (such as the mean square displacement) can be obtained from non-equilibrium measurements via umbrella sampling. Our model experimental system is a bead fluctuating in a time-varying optical trap. We also show this for simulated force spectroscopy on a complex soft molecule--a piston-rotaxane
Entropy in the NUT-Kerr-Newman Black Holes Due to an Arbitrary Spin Field
Membrane method is used to compute the entropy of the NUT-Kerr-Newman black
holes. It is found that even though the Euler characteristic is greater than
two, the Bekenstein-Hawking area law is still satisfied. The formula relating the entropy and the Euler characteristic becomes inapplicable for
non-extreme four dimensional NUT-Kerr-Newman black holes
A conjecture on the origin of dark energy
The physical origin of holographic dark energy (HDE) is investigated. The
main existing explanations, namely the UV/IR connection argument of Cohen et
al, Thomas' bulk holography argument, and Ng's spacetime foam argument, are
shown to be not satisfactory. A new explanation of the HDE model is then
proposed based on the ideas of Thomas and Ng. It is suggested that the dark
energy might originate from the quantum fluctuations of spacetime limited by
the event horizon of the universe. Several potential problems of the
explanation are also discussed.Comment: 11 pages, no figure
Does the mass of a black hole decrease due to the accretion of phantom energy
According to Babichev et al., the accretion of a phantom test fluid onto a
Schwarzschild black hole will induce the mass of the black hole to decrease,
however the backreaction was ignored in their calculation. Using new exact
solutions describing black holes in a background Friedmann-Robertson-Walker
universe, we find that the physical black hole mass may instead increase due to
the accretion of phantom energy. If this is the case, and the future universe
is dominated by phantom dark energy, the black hole apparent horizon and the
cosmic apparent horizon will eventually coincide and, after that, the black
hole singularity will become naked in finite comoving time before the Big Rip
occurs, violating the Cosmic Censorship Conjecture.Comment: 12 pages, 5 figures. PRD accepte
Normal-metal quasiparticle traps for superconducting qubits
The presence of quasiparticles in superconducting qubits emerges as an
intrinsic constraint on their coherence. While it is difficult to prevent the
generation of quasiparticles, keeping them away from active elements of the
qubit provides a viable way of improving the device performance. Here we
develop theoretically and validate experimentally a model for the effect of a
single small trap on the dynamics of the excess quasiparticles injected in a
transmon-type qubit. The model allows one to evaluate the time it takes to
evacuate the injected quasiparticles from the transmon as a function of trap
parameters. With the increase of the trap size, this time decreases
monotonically, saturating at the level determined by the quasiparticles
diffusion constant and the qubit geometry. We determine the characteristic trap
size needed for the relaxation time to approach that saturation value.Comment: 11 pages, 5 figure
- …