22,842 research outputs found

    Interacting Multiple Model-Feedback Particle Filter for Stochastic Hybrid Systems

    Full text link
    In this paper, a novel feedback control-based particle filter algorithm for the continuous-time stochastic hybrid system estimation problem is presented. This particle filter is referred to as the interacting multiple model-feedback particle filter (IMM-FPF), and is based on the recently developed feedback particle filter. The IMM-FPF is comprised of a series of parallel FPFs, one for each discrete mode, and an exact filter recursion for the mode association probability. The proposed IMM-FPF represents a generalization of the Kalmanfilter based IMM algorithm to the general nonlinear filtering problem. The remarkable conclusion of this paper is that the IMM-FPF algorithm retains the innovation error-based feedback structure even for the nonlinear problem. The interaction/merging process is also handled via a control-based approach. The theoretical results are illustrated with the aid of a numerical example problem for a maneuvering target tracking application

    Theory of time-resolved spectral function in high-temperature superconductors with bosonic modes

    Full text link
    We develop a three-temperature model to simulate the time dependence of electron and phonon temperatures in high-temperature superconductors displaying strong anistropic electron-phonon coupling. This model not only takes the tight-binding band structure into account, but also is valid in superconducting state. Based on this model, we calculate the time-resolved spectral function via the double-time Green's functions. We find that the dip-hump structure evolves with the time delay. More interestingly, new phononic structures are obtained when the phonons are excited by a laser field. This signature may serve as a direct evidence for electron-vibration mode coupling.Comment: 5 pages, 3 figure

    Confocal microscopic image sequence compression using vector quantization and 3D pyramids

    Get PDF
    The 3D pyramid compressor project at the University of Glasgow has developed a compressor for images obtained from CLSM device. The proposed method using a combination of image pyramid coder and vector quantization techniques has good performance at compressing confocal volume image data. An experiment was conducted on several kinds of CLSM data using the presented compressor compared to other well-known volume data compressors, such as MPEG-1. The results showed that the 3D pyramid compressor gave higher subjective and objective image quality of reconstructed images at the same compression ratio and presented more acceptable results when applying image processing filters on reconstructed images

    Demonstration of Shor's quantum factoring algorithm using photonic qubits

    Get PDF
    We report an experimental demonstration of a complied version of Shor's algorithm using four photonic qubits. We choose the simplest instance of this algorithm, that is, factorization of N=15 in the case that the period r=2r=2 and exploit a simplified linear optical network to coherently implement the quantum circuits of the modular exponential execution and semi-classical quantum Fourier transformation. During this computation, genuine multiparticle entanglement is observed which well supports its quantum nature. This experiment represents a step toward full realization of Shor's algorithm and scalable linear optics quantum computation.Comment: small changes over v2; to appear in PR

    Pion Form Factor in the kTk_T Factorization Formalism

    Full text link
    Based on the light-cone (LC) framework and the kTk_T factorization formalism, the transverse momentum effects and the different helicity components' contributions to the pion form factor Fπ(Q2)F_{\pi}(Q^2) are recalculated. In particular, the contribution to the pion form factor from the higher helicity components (λ1+λ2=±1\lambda_1+\lambda_2=\pm 1), which come from the spin-space Wigner rotation, are analyzed in the soft and hard energy regions respectively. Our results show that the right power behavior of the hard contribution from the higher helicity components can only be obtained by fully keeping the kTk_T dependence in the hard amplitude, and that the kTk_T dependence in LC wave function affects the hard and soft contributions substantially. As an example, we employ a model LC wave function to calculate the pion form factor and then compare the numerical predictions with the experimental data. It is shown that the soft contribution is less important at the intermediate energy region.Comment: 21 pages, 4 figure

    Small ball probability, Inverse theorems, and applications

    Full text link
    Let ξ\xi be a real random variable with mean zero and variance one and A=a1,...,anA={a_1,...,a_n} be a multi-set in Rd\R^d. The random sum SA:=a1ξ1+...+anξnS_A := a_1 \xi_1 + ... + a_n \xi_n where ξi\xi_i are iid copies of ξ\xi is of fundamental importance in probability and its applications. We discuss the small ball problem, the aim of which is to estimate the maximum probability that SAS_A belongs to a ball with given small radius, following the discovery made by Littlewood-Offord and Erdos almost 70 years ago. We will mainly focus on recent developments that characterize the structure of those sets AA where the small ball probability is relatively large. Applications of these results include full solutions or significant progresses of many open problems in different areas.Comment: 47 page

    Thermoelectric energy recovery at ionic-liquid/electrode interface

    Get PDF
    A Thermally Chargeable Capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide (EMIMTFSI) in acetonitrile is electrically charged by applying a tempera- ture gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is -1.7 mV/K for platinum foil electrodes and -0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic- liquid interface is 5 micro μ\muF for each platinum electrode while it becomes four orders of magnitude larger ≈36\approx 36 mF for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging pro- cess at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.Comment: 8 pages, 11 figure
    • …
    corecore