32,494 research outputs found

    Storage of light: A useful concept?

    Full text link
    We show both analytically and numerically that photons from a probe pulse are not stored in several recent experiments. Rather, they are absorbed to produce a two-photon excitation. More importantly, when an identical coupling pulse is re-injected into the medium, we show that the regenerated optical field has a pulse width that is very different from the original probe field. It is therefore, not a faithful copy of the original probe pulse.Comment: 5 pages, 3 figures. Correct LaTEX listings of reference

    New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing

    Full text link
    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part which is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief,our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high efficiency conversion. With appropriate phase-matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase-matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states |0> and |2> is always very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure

    Quantum secret sharing between m-party and n-party with six states

    Full text link
    We propose a quantum secret sharing scheme between mm-party and nn-party using three conjugate bases, i.e. six states. A sequence of single photons, each of which is prepared in one of the six states, is used directly to encode classical information in the quantum secret sharing process. In this scheme, each of all mm members in group 1 choose randomly their own secret key individually and independently, and then directly encode their respective secret information on the states of single photons via unitary operations, then the last one (the mmth member of group 1) sends 1/n1/n of the resulting qubits to each of group 2. By measuring their respective qubits, all members in group 2 share the secret information shared by all members in group 1. The secret message shared by group 1 and group 2 in such a way that neither subset of each group nor the union of a subset of group 1 and a subset of group 2 can extract the secret message, but each whole group (all the members of each group) can. The scheme is asymptotically 100% in efficiency. It makes the Trojan horse attack with a multi-photon signal, the fake-signal attack with EPR pairs, the attack with single photons, and the attack with invisible photons to be nullification. We show that it is secure and has an advantage over the one based on two conjugate bases. We also give the upper bounds of the average success probabilities for dishonest agent eavesdropping encryption using the fake-signal attack with any two-particle entangled states. This protocol is feasible with present-day technique.Comment: 7 page

    Superluminal propagation of an optical pulse in a Doppler broadened three-state, single channel active Raman gain medium

    Get PDF
    Using a single channel active Raman gain medium we show a (220±20)(220\pm 20)ns advance time for an optical pulse of τFWHM=15.4μ\tau_{FWHM}=15.4 \mus propagating through a 10 cm medium, a lead time that is comparable to what was reported previously. In addition, we have verified experimentally all the features associated with this single channel Raman gain system. Our results show that the reported gain-assisted superluminal propagation should not be attributed to the interference between the two frequencies of the pump field.Comment: 4 pages, 3 figure

    Role-similarity based functional prediction in networked systems: Application to the yeast proteome

    Full text link
    We propose a general method to predict functions of vertices where: 1. The wiring of the network is somehow related to the vertex functionality. 2. A fraction of the vertices are functionally classified. The method is influenced by role-similarity measures of social network analysis. The two versions of our prediction scheme is tested on model networks were the functions of the vertices are designed to match their network surroundings. We also apply these methods to the proteome of the yeast Saccharomyces cerevisiae and find the results compatible with more specialized methods

    Efficient quantum cryptography network without entanglement and quantum memory

    Full text link
    An efficient quantum cryptography network protocol is proposed with d-dimension polarized photons, without resorting to entanglement and quantum memory. A server on the network, say Alice, provides the service for preparing and measuring single photons whose initial state are |0>. The users code the information on the single photons with some unitary operations. For preventing the untrustworthy server Alice from eavesdropping the quantum lines, a nonorthogonal-coding technique (decoy-photon technique) is used in the process that the quantum signal is transmitted between the users. This protocol does not require the servers and the users to store the quantum state and almost all of the single photons can be used for carrying the information, which makes it more convenient for application than others with present technology. We also discuss the case with a faint laser pulse.Comment: 4 pages, 1 figures. It also presented a way for preparing decoy photons without a sinigle-photon sourc

    Circular quantum secret sharing

    Full text link
    A circular quantum secret sharing protocol is proposed, which is useful and efficient when one of the parties of secret sharing is remote to the others who are in adjacent, especially the parties are more than three. We describe the process of this protocol and discuss its security when the quantum information carrying is polarized single photons running circularly. It will be shown that entanglement is not necessary for quantum secret sharing. Moreover, the theoretic efficiency is improved to approach 100% as almost all the instances can be used for generating the private key, and each photon can carry one bit of information without quantum storage. It is straightforwardly to utilize this topological structure to complete quantum secret sharing with multi-level two-particle entanglement in high capacity securely.Comment: 7 pages, 2 figure

    Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device

    Full text link
    We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. The device is made from an epitaxially grown InSb nanowire with two superconductor Nb contacts on a Si/SiO2_2 substrate. At low temperatures, a quantum dot is formed in the segment of the InSb nanowire between the two Nb contacts and the two Nb contacted segments of the InSb nanowire show superconductivity due to the proximity effect. At zero magnetic field, well defined Coulomb diamonds and the Kondo effect are observed in the charge stability diagram measurements in the Coulomb blockade regime of the quantum dot. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed in the same Coulomb blockade regime. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with the signatures of Majorana fermion physics in a nanowire based topological superconductor-quantum dot-topological superconductor system, in which the two Majorana bound states adjacent to the quantum dot are hybridized into a pair of quasi-particle states with finite energies and the other two Majorana bound states remain as the zero-energy modes located at the two ends of the entire InSb nanowire.Comment: 6 pages, 4 figure

    Generation of N-qubit W state with rf-SQUID qubits by adiabatic passage

    Get PDF
    A simple scheme is presented to generate n-qubit W state with rf-superconducting quantum interference devices (rf-SQUIDs) in cavity QED through adiabatic passage. Because of the achievable strong coupling for rf-SQUID qubits embedded in cavity QED, we can get the desired state with high success probability. Furthermore, the scheme is insensitive to position inaccuracy of the rf-SQUIDs. The numerical simulation shows that, by using present experimental techniques, we can achieve our scheme with very high success probability, and the fidelity could be eventually unity with the help of dissipation.Comment: to appear in Phys. Rev.

    Characterising Probabilistic Processes Logically

    Full text link
    In this paper we work on (bi)simulation semantics of processes that exhibit both nondeterministic and probabilistic behaviour. We propose a probabilistic extension of the modal mu-calculus and show how to derive characteristic formulae for various simulation-like preorders over finite-state processes without divergence. In addition, we show that even without the fixpoint operators this probabilistic mu-calculus can be used to characterise these behavioural relations in the sense that two states are equivalent if and only if they satisfy the same set of formulae.Comment: 18 page
    • …
    corecore