43,712 research outputs found

    Decomposition of Triebel-Lizorkin and Besov spaces in the context of Laguerre expansions

    Get PDF
    A pair of dual frames with almost exponentially localized elements (needlets) are constructed on \RR_+^d based on Laguerre functions. It is shown that the Triebel-Lizorkin and Besov spaces induced by Laguerre expansions can be characterized in terms of respective sequence spaces that involve the needlet coefficients.Comment: 42 page

    Mapping warm molecular hydrogen with Spitzer's Infrared Array Camera (IRAC)

    Full text link
    Photometric maps, obtained with Spitzer's Infrared Array Camera (IRAC), can provide a valuable probe of warm molecular hydrogen within the interstellar medium. IRAC maps of the supernova remnant IC443, extracted from the Spitzer archive, are strikingly similar to spectral line maps of the H2 pure rotational transitions that we obtained with the Infrared Spectrograph (IRS) instrument on Spitzer. IRS spectroscopy indicates that IRAC Bands 3 and 4 are indeed dominated by the H2 v=0-0 S(5) and S(7) transitions, respectively. Modeling of the H2 excitation suggests that Bands 1 and 2 are dominated by H2 v=1-0 O(5) and v=0-0 S(9). Large maps of the H2 emission in IC433, obtained with IRAC, show band ratios that are inconsistent with the presence of gas at a single temperature. The relative strengths of IRAC Bands 2, 3, and 4 are consistent with pure H2 emission from shocked material with a power-law distribution of gas temperatures. CO vibrational emissions do not contribute significantly to the observed Band 2 intensity. Assuming that the column density of H2 at temperatures T to T+dT is proportional to T raised to the power -b for temperatures up to 4000 K, we obtained a typical estimate of 4.5 for b. The power-law index, b, shows variations over the range 3 to 6 within the set of different sight-lines probed by the maps, with the majority of sight-lines showing b in the range 4 to 5. The observed power-law index is consistent with the predictions of simple models for paraboloidal bow shocks.Comment: 27 pages, including 11 figures. Accepted for publication in Ap

    Symmetry protected fractional Chern insulators and fractional topological insulators

    Full text link
    In this paper we construct fully symmetric wavefunctions for the spin-polarized fractional Chern insulators (FCI) and time-reversal-invariant fractional topological insulators (FTI) in two dimensions using the parton approach. We show that the lattice symmetry gives rise to many different FCI and FTI phases even with the same filling fraction ν\nu (and the same quantized Hall conductance σxy\sigma_{xy} in FCI case). They have different symmetry-protected topological orders, which are characterized by different projective symmetry groups. We mainly focus on FCI phases which are realized in a partially filled band with Chern number one. The low-energy gauge groups of a generic σxy=1/m⋅e2/h\sigma_{xy}=1/m\cdot e^2/h FCI wavefunctions can be either SU(m)SU(m) or the discrete group ZmZ_m, and in the latter case the associated low-energy physics are described by Chern-Simons-Higgs theories. We use our construction to compute the ground state degeneracy. Examples of FCI/FTI wavefunctions on honeycomb lattice and checkerboard lattice are explicitly given. Possible non-Abelian FCI phases which may be realized in a partially filled band with Chern number two are discussed. Generic FTI wavefunctions in the absence of spin conservation are also presented whose low-energy gauge groups can be either SU(m)×SU(m)SU(m)\times SU(m) or Zm×ZmZ_m\times Z_m. The constructed wavefunctions also set up the framework for future variational Monte Carlo simulations.Comment: 24 pages, 13 figures, published versio

    CO observations and investigation of triggered star formation towards N10 infrared bubble and surroundings

    Full text link
    We studied the environment of the dust bubble N10 in molecular emission. Infrared bubbles, first detected by the GLIMPSE survey at 8.0 μ\mum, are ideal regions to investigate the effect of the expansion of the HII region on its surroundings eventual triggered star formation at its borders. In this work, we present a multi-wavelength study of N10. This bubble is especially interesting as infrared studies of the young stellar content suggest a scenario of ongoing star formation, possibly triggered, on the edge of the HII region. We carried out observations of 12^{12}CO(1-0) and 13^{13}CO(1-0) emission at PMO 13.7-m towards N10. We also analyzed the IR and sub-mm emission on this region and compare those different tracers to obtain a detailed view of the interaction between the expanding HII region and the molecular gas. We also estimated the parameters of the denser cold dust condensation and of the ionized gas inside the shell. Bright CO emission was detected and two molecular clumps were identified, from which we have derived physical parameters. We also estimate the parameters for the densest cold dust condensation and for the ionized gas inside the shell. The comparison between the dynamical age of this region and the fragmentation time scale favors the "Radiation-Driven Implosion" mechanism of star formation. N10 reveals to be specially interesting case with gas structures in a narrow frontier between HII region and surrounding molecular material, and with a range of ages of YSOs situated in region indicating triggered star formation.Comment: Version 2 - Submmited to ApJ (under review

    Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy

    Get PDF
    We present a phenomenological study of nuclear effects in neutrino charged-current interactions, using transverse kinematic imbalances in exclusive measurements. Novel observables with minimal dependence on neutrino energy are proposed to study quasielastic scattering, and especially resonance production. They should be able to provide direct constraints on nuclear effects in neutrino- and antineutrino-nucleus interactions.Comment: 7 pages, 9 figures, accepted version by PR

    Experimental position-time entanglement with degenerate single photons

    Full text link
    We report an experiment in which two-photon interference occurs between degenerate single photons that never meet. The two photons travel in opposite directions through our fibre-optic interferometer and interference occurs when the photons reach two different, spatially separated, 2-by-2 couplers at the same time. We show that this experiment is analogous to the conventional Franson-type entanglement experiment where the photons are entangled in position and time. We measure wavefunction overlaps for the two photons as high as 94 ±\pm 3%.Comment: Updated to published version, new fig. 4., corrected typo

    Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development.

    Get PDF
    During the phylotypic period, embryos from different genera show similar gene expression patterns, implying common regulatory mechanisms. Here we set out to identify enhancers involved in the initial events of cardiogenesis, which occurs during the phylotypic period. We isolate early cardiac progenitor cells from zebrafish embryos and characterize 3838 open chromatin regions specific to this cell population. Of these regions, 162 overlap with conserved non-coding elements (CNEs) that also map to open chromatin regions in human. Most of the zebrafish conserved open chromatin elements tested drive gene expression in the developing heart. Despite modest sequence identity, human orthologous open chromatin regions recapitulate the spatial temporal expression patterns of the zebrafish sequence, potentially providing a basis for phylotypic gene expression patterns. Genome-wide, we discover 5598 zebrafish-human conserved open chromatin regions, suggesting that a diverse repertoire of ancient enhancers is established prior to organogenesis and the phylotypic period

    On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk

    Full text link
    We performed a series of hydro-dynamic simulations to investigate the orbital migration of a Jovian planet embedded in a proto-stellar disk. In order to take into account of the effect of the disk's self gravity, we developed and adopted an \textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the exact Reimann solution for isothermal or polytropic gas, with non-reflecting boundary conditions. Our simulations indicate that in the study of the runaway (type III) migration, it is important to carry out a fully self consistent treatment of the gravitational interaction between the disk and the embedded planet. Through a series of convergence tests, we show that adequate numerical resolution, especially within the planet's Roche lobe, critically determines the outcome of the simulations. We consider a variety of initial conditions and show that isolated, non eccentric protoplanet planets do not undergo type III migration. We attribute the difference between our and previous simulations to the contribution of a self consistent representation of the disk's self gravity. Nevertheless, type III migration cannot be completely suppressed and its onset requires finite amplitude perturbations such as that induced by planet-planet interaction. We determine the radial extent of type III migration as a function of the disk's self gravity.Comment: 19 pages, 13 figure

    From Jeff=1/2 insulator to p-wave superconductor in single-crystal Sr2Ir1-xRuxO4 (0 < x< 1)

    Get PDF
    Sr2IrO4 is a magnetic insulator assisted by strong spin-orbit coupling (SOC) whereas the Sr2RuO4 is a p-wave superconductor. The contrasting ground states have been shown to result from the critical role of the strong SOC in the iridate. Our investigation of structural, transport, and magnetic properties reveals that substituting 4d Ru4+ (4d4) ions for 5d Ir4+(5d5) ions in Sr2IrO4 directly adds holes to the t2g bands, reduces the SOC and thus rebalances the competing energies in single-crystal Sr2Ir1-xRuxO4. A profound effect of Ru doping driving a rich phase diagram is a structural phase transition from a distorted I41/acd to a more ideal I4/mmm tetragonal structure near x=0.50 that accompanies a phase transition from an antiferromagnetic-insulating state to a paramagnetic-metal state. We also make a comparison drawn with Rh doped Sr2IrO4, highlighting important similarities and differences.Comment: 18 pages,7 figure

    Origin of the X-ray Emission in the Nuclei of FR Is

    Full text link
    We investigate the X-ray origin in FRIs using the multi-waveband high resolution data of eight FR I sources, which have very low Eddington ratios. We fit their multi-waveband spectrum using a coupled accretion-jet model. We find that X-ray emission in the source with the highest L_X (~1.8*10^-4 L_Edd) is from the advection-dominated accretion flow (ADAF). Four sources with moderate L_X(~several*10^-6 L_Edd) are complicated. The X-ray emission of one FR I is from the jet, and the other three is from the sum of the jet and ADAF. The X-ray emission in the three least luminous sources (L_X<1.0*10^-6L_Edd) is dominated by the jet. These results roughly support the predictions of Yuan and Cui(2005) where they predict that when the X-ray luminosity of the system is below a critical value, the X-radiation will not be dominated by the emission from the ADAF any longer, but by the jet. We also find that the accretion rates in four sources must be higher than the Bondi rates, which implies that other fuel supply (e.g., stellar winds) inside the Bondi radius should be important.Comment: 6 pages. To published in Journal of Physics, in proceedings of "The Universe under the Microscope - Astrophysics at High Angular Resolution" (Bad Honnef, Germany, April 2008), eds. R. Schoedel, A. Eckart, S. Pfalzner, and E. Ro
    • …
    corecore