24,704 research outputs found

    Beam energy dependence of Hanbury-Brown-Twiss radii from a blast-wave model

    Get PDF
    The beam energy dependence of correlation lengths (the Hanbury-Brown-Twiss radii) is calculated by using a blast-wave model and the results are comparable with those from RHIC-STAR beam energy scan data as well as the LHC-ALICE measurements. A set of parameter for the blast-wave model as a function of beam energy under study are obtained by fit to the HBT radii at each energy point. The transverse momentum dependence of HBT radii is presented with the extracted parameters for Au + Au collision at sNN=\sqrt{s_{NN}} = 200 GeV and for Pb+Pb collisions at 2.76 TeV. From our study one can learn that particle emission duration can not be ignored while calculating the HBT radii with the same parameters. And tuning kinetic freeze-out temperature in a range will result in system lifetime changing in the reverse direction as it is found in RHIC-STAR experiment measurements.Comment: 9 pages, 9 figure

    Geometric representations of the formal affine Hecke algebra

    Get PDF

    δ\delta meson effects on neutron stars in the modified quark-meson coupling model

    Full text link
    The properties of neutron stars are investigated by including δ\delta meson field in the Lagrangian density of modified quark-meson coupling model. The Σ\Sigma^- population with δ\delta meson is larger than that without δ\delta meson at the beginning, but it becomes smaller than that without δ\delta meson as the appearance of Ξ\Xi^-. The δ\delta meson has opposite effects on hadronic matter with or without hyperons: it softens the EOSes of hadronic matter with hyperons, while it stiffens the EOSes of pure nucleonic matter. Furthermore, the leptons and the hyperons have the similar influence on δ\delta meson effects. The δ\delta meson increases the maximum masses of neutron stars. The influence of (σ,ϕ)(\sigma^*,\phi) on the δ\delta meson effects are also investigated.Comment: 10 pages, 6 figures, 4 table

    The properties of kaonic nuclei in relativistic mean-field theory

    Full text link
    The static properties of some possible light and moderate kaonic nuclei, from C to Ti, are studied in the relativistic mean-field theory. The 1s and 1p state binding energies of KK^- are in the range of 739673\sim 96 MeV and 226322\sim 63 MeV, respectively. The binding energies of 1p states increase monotonically with the nucleon number A. The upper limit of the widths are about 42±1442\pm 14 MeV for the 1s states, and about 71±1071\pm 10 MeV for the 1p states. The lower limit of the widths are about 12±412\pm 4 MeV for the 1s states, and 21±321\pm 3 MeV for the 1p states. If V030V_{0}\leq 30 MeV, the discrete KK^- bound states should be identified in experiment. The shrinkage effect is found in the possible kaonic nuclei. The interior nuclear density increases obviously, the densest center density is about 2.1ρ02.1\rho_{0}.Comment: 9 pages, 2 tables and 1 figure, widths are considered, changes a lo

    Some new research trends in wirelessly powered communications

    Get PDF
    postprin
    corecore