42,869 research outputs found

    The effect of non-linear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas

    Full text link
    With the aid of large-scale three-dimensional QED-PIC simulations, we describe a realistic experimental configuration to measure collective effects that couple strong field quantum electrodynamics to plasma kinetics. For two counter propagating lasers interacting with a foil at intensities exceeding 102210^{22} Wcm2^{-2}, a binary result occurs; when quantum effects are included, a foil that classically would effectively transmit the laser pulse becomes opaque. This is a dramatic change in plasma behavior, directly as a consequence of the coupling of radiation reaction and pair production to plasma dynamics

    Nonclassical photon pairs generated from a room-temperature atomic ensemble

    Full text link
    We report experimental generation of non-classically correlated photon pairs from collective emission in a room-temperature atomic vapor cell. The nonclassical feature of the emission is demonstrated by observing a violation of the Cauchy-Schwarz inequality. Each pair of correlated photons are separated by a controllable time delay up to 2 microseconds. This experiment demonstrates an important step towards the realization of the Duan-Lukin-Cirac-Zoller scheme for scalable long-distance quantum communication.Comment: 4 pages, 2 figure

    Charge and critical density of strange quark matter

    Full text link
    The electric charge of strange quark matter is of vital importance to experiments. A recent investigation shows that strangelets are most likely highly negatively charged, rather than slightly positively charged as previously believed. Our present study indicates that negative charges can indeed lower the critical density, and thus be favorable to the experimental searches in heavy ion collisions. However, too much negative charges can make it impossible to maintain flavor equilibrium.Comment: 4 pages, LATeX with REVTeX style, one PS figure. To be published in Phys. Rev. C 59(6), 199

    Influence of the charge carrier tunneling processes on the recombination dynamics in single lateral quantum dot molecules

    Full text link
    We report on the charge carrier dynamics in single lateral quantum dot molecules and the effect of an applied electric field on the molecular states. Controllable electron tunneling manifests itself in a deviation from the typical excitonic decay behavior which is strongly influenced by the tuning electric field and inter-molecular Coulomb energies. A rate equation model is developed to gain more insight into the charge transfer and tunneling mechanisms. Non-resonant (phonon-mediated) electron tunneling which changes the molecular exciton character from direct to indirect, and vice versa, is found to be the dominant tunable decay mechanism of excitons besides radiative recombination.Comment: 4 pages, 4 figure

    Magnitude and Sign Correlations in Heartbeat Fluctuations

    Full text link
    We propose an approach for analyzing signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and analyzing their scaling properties. We show that signals with identical long-range correlations can exhibit different time organization for the magnitude and sign. We find that the magnitude series relates to the nonlinear properties of the original time series, while the sign series relates to the linear properties. We apply our approach to the heartbeat interval series and find that the magnitude series is long-range correlated, while the sign series is anticorrelated and that both magnitude and sign series may have clinical applications.Comment: 4 pages,late
    corecore