8,730 research outputs found

    Density-functional study of defects in two-dimensional circular nematic nanocavities

    Full text link
    We use density--functional theory to study the structure of two-dimensional defects inside a circular nematic nanocavity. The density, nematic order parameter, and director fields, as well as the defect core energy and core radius, are obtained in a thermodynamically consistent way for defects with topological charge k=+1k=+1 (with radial and tangential symmetries) and k=+1/2k=+1/2. An independent calculation of the fluid elastic constants, within the same theory, allows us to connect with the local free--energy density predicted by elastic theory, which in turn provides a criterion to define a defect core boundary and a defect core free energy for the two types of defects. The radial and tangential defects turn out to have very different properties, a feature that a previous Maier--Saupe theory could not account for due to the simplified nature of the interactions --which caused all elastic constants to be equal. In the case with two k=+1/2k=+1/2 defects in the cavity, the elastic r\'egime cannot be reached due to the small radii of the cavities considered, but some trends can already be obtained.Comment: 9 figures. Accepted for publication in liquid crystal

    Biaxial nematic and smectic phases of parallel particles with different cross sections

    Get PDF
    We have calculated the phase diagrams of one--component fluids made of five types of biaxial particles differing in their cross sections. The orientation of the principal particle axis is fixed in space, while the second axis is allowed to freely rotate. We have constructed a free-energy density functional based on fundamental--measure theory to study the relative stability of nematic and smectic phases with uniaxial, biaxial and tetratic symmetries. Minimization of the density functional allows us to study the phase behavior of the biaxial particles as a function of the cross-section geometry. For low values of the aspect ratio of the particle cross section, we obtain smectic phases with tetratic symmetry, although metastable with respect to the crystal, as our MC simulation study indicates. For large particle aspect ratios and in analogy with previous work [Phys. Chem. Chem. Phys. 5, 3700 (2003)], we have found a four--phase point where four spinodals, corresponding to phase transitions between phases with different symmetries, meet together. The location of this point is quite sensitive to particle cross section, which suggests that optimizing the particle geometry could be a useful criterion in the design of colloidal particles that can exhibit an increased stability of the biaxial nematic phase with respect to other competing phases with spatial order.Comment: 13 pages, 12 figures, submitted to PR

    Capillary and anchoring effects in thin hybrid nematic films and connection with bulk behavior

    Full text link
    By means of a molecular model, we examine hybrid nematic films with antagonistic anchoring angles where one of the surfaces is in the strong anchoring regime. If anchoring at the other surface is weak, and in the absence of wetting by the isotropic phase, the anchoring transition may interact with the capillary isotropic-nematic transition in interesting ways. For general anchoring conditions on this surface we confirm the existence of the step-tilt, biaxial phase and the associated transition to the linear, constant-tilt-rotation, configuration. The step-like phase is connected with the bulk isotropic phase for increasing film thickness so that the latter transition is to be interpreted as the capillary isotropic-nematic transition. Finally, we suggest possible global surface phase diagrams.Comment: 7 pages, 5 figure

    Some thoughts about nonequilibrium temperature

    Full text link
    The main objective of this paper is to show that, within the present framework of the kinetic theoretical approach to irreversible thermodynamics, there is no evidence that provides a basis to modify the ordinary Fourier equation relating the heat flux in a non-equilibrium steady state to the gradient of the local equilibrium temperature. This fact is supported, among other arguments, through the kinetic foundations of generalized hydrodynamics. Some attempts have been recently proposed asserting that, in the presence of non-linearities of the state variables, such a temperature should be replaced by the non-equilibrium temperature as defined in Extended Irreversible Thermodynamics. In the approximations used for such a temperature there is so far no evidence that sustains this proposal.Comment: 13 pages, TeX, no figures, to appear in Mol. Phy
    corecore