146 research outputs found

    Magnetic response dependence of ZnO based thin films on Ag doping and processing architecture

    Get PDF
    Multifunctional and multiresponsive thin films are playing an increasing role in modern technology. This work reports a study on the magnetic properties of ZnO and Ag-doped ZnO semiconducting films prepared with a zigzag-like columnar architecture and their correlation with the processing conditions. The films were grown through Glancing Angle Deposition (GLAD) co-sputtering technique to improve the induced ferromagnetism at room temperature. Structural and morphological characterizations have been performed and correlated with the paramagnetic resonance measurements, which demonstrate the existence of vacancies in both as-cast and annealed films. The magnetic measurements reveal changes in the magnetic order of both ZnO and Ag-doped ZnO films with increasing temperature, showing an evolution from a paramagnetic (at low temperature) to a diamagnetic behavior (at room temperature). Further, the room temperature magnetic properties indicate a ferromagnetic order even for the un-doped ZnO film. The results open new perspectives for the development of multifunctional ZnO semiconductors, the GLAD co-sputtering technique enables the control of the magnetic response, even in the un-doped semiconductor materials.The Brazilian agencies CNPq, CAPES partially supports the research. From Portugal side, this work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2020 and the junior research contract (A.F.). Financial support from the Basque Government Industry Department under the ELKARTEK. HAZITEK and PIBA programs is also acknowledged

    Genetic Ancestry, Race, and Severity of Acutely Decompensated Cirrhosis in Latin America

    Get PDF
    Background & Aims: Genetic ancestry or racial differences in health outcomes exist in diseases associated with systemic inflammation (eg, COVID-19). This study aimed to investigate the association of genetic ancestry and race with acute-on-chronic liver failure (ACLF), which is characterized by acute systemic inflammation, multi-organ failure, and high risk of short-term death. / Methods: This prospective cohort study analyzed a comprehensive set of data, including genetic ancestry and race among several others, in 1274 patients with acutely decompensated cirrhosis who were nonelectively admitted to 44 hospitals from 7 Latin American countries. / Results: Three hundred ninety-five patients (31.0%) had ACLF of any grade at enrollment. Patients with ACLF had a higher median percentage of Native American genetic ancestry and lower median percentage of European ancestry than patients without ACLF (22.6% vs 12.9% and 53.4% vs 59.6%, respectively). The median percentage of African genetic ancestry was low among patients with ACLF and among those without ACLF. In terms of race, a higher percentage of patients with ACLF than patients without ACLF were Native American and a lower percentage of patients with ACLF than patients without ACLF were European American or African American. In multivariable analyses that adjusted for differences in sociodemographic and clinical characteristics, the odds ratio for ACLF at enrollment was 1.08 (95% CI, 1.03–1.13) with Native American genetic ancestry and 2.57 (95% CI, 1.84–3.58) for Native American race vs European American race. / Conclusions: In a large cohort of Latin American patients with acutely decompensated cirrhosis, increasing percentages of Native American ancestry and Native American race were factors independently associated with ACLF at enrollment

    Adjuvant interferon gamma in patients with drug – resistant pulmonary tuberculosis: a pilot study

    Get PDF
    BACKGROUND: Tuberculosis (TB) is increasing in the world and drug-resistant (DR) disease beckons new treatments. METHODS: To evaluate the action of interferon (IFN) gamma as immunoadjuvant to chemotherapy on pulmonary DR-TB patients, a pilot, open label clinical trial was carried out in the Cuban reference ward for the management of this disease. The eight subjects existing in the country at the moment received, as in-patients, 1 × 10(6 )IU of recombinant human IFN gamma intramuscularly, daily for one month and then three times per week up to 6 months as adjuvant to the indicated chemotherapy, according to their antibiograms and WHO guidelines. Sputum samples collection for direct smear observation and culture as well as routine clinical and thorax radiography assessments were done monthly. RESULTS: Sputum smears and cultures became negative for acid-fast-bacilli before three months of treatment in all patients. Lesion size was reduced at the end of 6 months treatment; the lesions disappeared in one case. Clinical improvement was also evident; body mass index increased in general. Interferon gamma was well tolerated. Few adverse events were registered, mostly mild; fever and arthralgias prevailed. CONCLUSIONS: These data suggest that IFN gamma is useful and well tolerated as adjunctive therapy in patients with DR-TB. Further controlled clinical trials are encouraged

    2 nd Brazilian Consensus on Chagas Disease, 2015

    Full text link
    Abstract Chagas disease is a neglected chronic condition with a high burden of morbidity and mortality. It has considerable psychological, social, and economic impacts. The disease represents a significant public health issue in Brazil, with different regional patterns. This document presents the evidence that resulted in the Brazilian Consensus on Chagas Disease. The objective was to review and standardize strategies for diagnosis, treatment, prevention, and control of Chagas disease in the country, based on the available scientific evidence. The consensus is based on the articulation and strategic contribution of renowned Brazilian experts with knowledge and experience on various aspects of the disease. It is the result of a close collaboration between the Brazilian Society of Tropical Medicine and the Ministry of Health. It is hoped that this document will strengthen the development of integrated actions against Chagas disease in the country, focusing on epidemiology, management, comprehensive care (including families and communities), communication, information, education, and research

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of δCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of δCP\delta_{CP}. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter.Comment: Contribution to Snowmass 202

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model
    corecore