116 research outputs found

    Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes

    Get PDF
    Background: The interaction of asbestos fibers with target cell membranes is still poorly investigated. Here, we detected and characterized an enhancement of chloride conductance in Xenopus oocyte cell membranes induced by exposure to crocidolite (Croc) asbestos fibers. Methods: A two-microelectrode voltage clamp technique was used to test the effect of Croc fiber suspensions on outward chloride currents evoked by step membrane depolarization. Calcium imaging experiments were also performed to investigate the variation of 'resting' oocyte [Ca2+]i following asbestos exposure. Results: The increase in chloride current after asbestos treatment, was sensitive to [Ca2+]e, and to specific blockers of TMEM16A Ca2+-activated chloride channels, MONNA and Ani9. Furthermore, asbestos treatment elevated the 'resting' [Ca2+]i likelihood by increasing the cell membrane permeability to Ca2 in favor of a tonic activation of TMEME16A channels. Western blot analysis confirmed that TMEME16A protein was endogenously present in the oocyte cell membrane and absorbed by Croc. Conclusion: the TMEM16A channels endogenously expressed by Xenopus oocytes are targets for asbestos fibers and represent a powerful tool for asbestos-membrane interaction studies. Interestingly, TMEM16A channels are highly expressed in many types of tumors, including some asbestos-related cancers, suggesting them, for the first time, as a possible early target of crocidolite-mediated tumorigenic effects on target cell membranes

    Differential protein folding and chemical changes in lung tissues exposed to asbestos or particulates

    Get PDF
    Environmental and occupational inhalants may induce a large number of pulmonary diseases, with asbestos exposure being the most risky. The mechanisms are clearly related to chemical composition and physical and surface properties of materials. A combination of X-ray fluorescence (\u3bcXRF) and Fourier Transform InfraRed (\u3bcFTIR) microscopy was used to chemically characterize and compare asbestos bodies versus environmental particulates (anthracosis) in lung tissues from asbestos exposed and control patients. \u3bcXRF analyses revealed heterogeneously aggregated particles in the anthracotic structures, containing mainly Si, K, Al and Fe. Both asbestos and particulates alter lung iron homeostasis, with a more marked effect in asbestos exposure. \u3bcFTIR analyses revealed abundant proteins on asbestos bodies but not on anthracotic particles. Most importantly, the analyses demonstrated that the asbestos coating proteins contain high levels of \u3b2-sheet structures. The occurrence of conformational changes in the proteic component of the asbestos coating provides new insights into long-term asbestos effects

    The dissociation of exocytosis and respiratory stimulation in leucocytes by ionophores.

    No full text
    By exploiting the unique characteristics of three ionophores, experimental conditions were found which permit the dissociation of respiratory stimulation from secretion in polymorphonuclear leucocytes. A marked stimulation of respiration was produced by ionophore X537A, which binds and transports both alkali-earth and alkali cations. The stimulatory activity of this ionophore was the same at either high or low Na+/K+ ratios in the medium and was virtually unaffected by extracellular Ca2+. A slight stimulation of oxygen consumption was also caused by the K+-selective ionophore valinomycin and by ionophore A23187, which complexes and transfers bivalent cations. Ionophore X537A and valinomycin were unable to stimulate selective release of granuleassociated beta-glucuronidase and gradually increased cell fragility, as monitored by increased leakage of lactate dehydrogenase. Ionophore A23187 slightly increased exocytosis of beta-glucuronidase. In a Mg2+-free medium, Ca2+, added simultaneously with ionophore A23187, greatly enhanced respiration and secretion of the granule enzyme. If Ca2+ was added a few minutes after the ionophore, exocytosis occurred, but no respiratory burst was observed. If the latter experiment was repeated in the presence of extracellular Mg2+, both secretion and respiration were stimulated. This effect was not produced by Mn2+ or Ba2+. It is proposed that Ca2+ is required for triggering selective secretion of granule enzymes from leucocytes is caused by an intracellular redistribution of cations, which may invovle Mg2+-dependent mechanisms

    Glycosylation improves the priming effect exerted by recombinant human granulocyte colony-stimulating factor (lenograstim) on human neutrophil superoxide production.

    No full text
    The role of glycosylation in modulating the activity of recombinant human granulocyte colony-stimulating factor (rHuG-CSF) on polymorphonuclear leukocytes (PMNs) was investigated. We addressed this study by comparing the effects of lenograstim (glycosylated rHuG-CSF) and its deglycosylated counterpart on superoxide production by PMNs on fibronectin. When the triggering activity of the cytokine was evaluated, no O2- release was elicited from neutrophils treated with either preparation of rHuG-CSF. Instead, a clear potentiation of both fMLP- and TNF-induced respiratory burst was produced by preincubating the cells with rHuG-CSF. Such effect was found to be significantly increased when glycosylated versus deglycosylated preparation was used, leading to the conclusion that the sugar moiety of the molecule could be of importance in improving the priming activity exerted by rHuG-CSF on PMN metabolic response

    Metabolic stimulation of polymorphonuclear leucocytes: effects of tetravalent and divalent concanavalin A

    No full text
    Polymorphonuclear leucocytes (PMNL) undergo a marked activation of their oxidative metabolism upon interaction with surface-reactive soluble stimuli as well as with phagocytosable objects. To get some insight into the mechanism of this stimulation, we have compared the stimulatory activity of the tetravalent lectin concanavalin A (Con A) with that of the divalent derivative succinyl-Con A (S-Con A). Both lectins bind to the PMNL surface to the same extent. S-Con A, however, is much less efficient in stimulating the PMNL metabolism. When S-Con A-treated PMNL are further reacted with antiserum to Con A, a potentiation of the metabolic stimulation is observed. Normal serum or addition to PMNL of antiserum to Con A in the absence of lectin has no effect. Furthermore, if S-Con A is displaced from its receptors on the cell membrane with alpha-methyl mannopyranoside, the addition of antiserum fails to cause a respiratory stimulation. These results suggest that the initial triggering of the metabolic stimulation of PMNL is in part accomplished through cross-linkage of membrane constituents
    • …
    corecore