3 research outputs found

    An internet-based intervention with brief nurse support to manage obesity in primary care (POWeR+): a pragmatic, parallel-group, randomised controlled trial

    No full text
    Background The obesity epidemic has major public health consequences. Expert dietetic and behavioural counselling with intensive follow-up is effective, but resource requirements severely restrict widespread implementation in primary care, where most patients are managed. We aimed to estimate the effectiveness and cost-effectiveness of an internet-based behavioural intervention (POWeR+) combined with brief practice nurse support in primary care. Methods We did this pragmatic, parallel-group, randomised controlled trial at 56 primary care practices in central and south England. Eligible adults aged 18 years or older with a BMI of 30 kg/m 2 or more (or ≥28 kg/m 2 with hypertension, hypercholesterolaemia, or diabetes) registered online with POWeR+—a 24 session, web-based, weight management intervention lasting 6 months. After registration, the website automatically randomly assigned patients (1:1:1), via computer-generated random numbers, to receive evidence-based dietetic advice to swap foods for similar, but healthier, choices and increase fruit and vegetable intake, in addition to 6 monthly nurse follow-up (control group); web-based intervention and face-to-face nurse support (POWeR+Face-to-face [POWeR+F]; up to seven nurse contacts over 6 months); or web-based intervention and remote nurse support (POWeR+Remote [POWeR+R]; up to five emails or brief phone calls over 6 months). Participants and investigators were masked to group allocation at the point of randomisation; masking of participants was not possible after randomisation. The primary outcome was weight loss averaged over 12 months. We did a secondary analysis of weight to measure maintenance of 5% weight loss at months 6 and 12. We modelled the cost-effectiveness of each intervention. We did analysis by intention to treat, with multiple imputation for missing data. This trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN21244703. Findings Between Jan 30, 2013, and March 20, 2014, 818 participants were randomly assigned to the control group (n=279), the POWeR+F group (n=269), or the POWeR+R group (n=270). Weight loss averaged over 12 months was recorded in 666 (81%) participants. The control group lost almost 3 kg over 12 months (crude mean weight: baseline 104·38 kg [SD 21·11; n=279], 6 months 101·91 kg [19·35; n=136], 12 months 101·74 kg [19·57; n=227]). The primary imputed analysis showed that compared with the control group, patients in the POWeR+F group achieved an additional weight reduction of 1·5 kg (95% CI 0·6–2·4; p=0·001) averaged over 12 months, and patients in the POWeR+R group achieved an additional 1·3 kg (0·34–2·2; p=0·007). 21% of patients in the control group had maintained a clinically important 5% weight reduction at month 12, compared with 29% of patients in the POWeR+F group (risk ratio 1·56, 0·96–2·51; p=0·070) and 32% of patients in the POWeR+R group (1·82, 1·31–2·74; p=0·004). The incremental overall cost to the health service per kg weight lost with the POWeR+ interventions versus the control strategy was £18 (95% CI −129 to 195) for POWeR+F and –£25 (−268 to 157) for POWeR+R; the probability of being cost-effective at a threshold of £100 per kg lost was 88% and 98%, respectively. No adverse events were reported. Interpretation Weight loss can be maintained in some individuals by use of novel written material with occasional brief nurse follow-up. However, more people can maintain clinically important weight reductions with a web-based behavioural program and brief remote follow-up, with no increase in health service costs. Future research should assess the extent to which clinically important weight loss can be maintained beyond 1 year. Funding Health Technology Assessment Programme of the National Institute for Health Research

    Delayed antibiotic prescribing for respiratory tract infections: protocol of an individual patient data meta-analysis.

    No full text
    INTRODUCTION: Delayed prescribing can be a useful strategy to reduce antibiotic prescribing, but it is not clear for whom delayed prescribing might be effective. This protocol outlines an individual patient data (IPD) meta-analysis of randomised controlled trials (RCTs) and observational cohort studies to explore the overall effect of delayed prescribing and identify key patient characteristics that are associated with efficacy of delayed prescribing. METHODS AND ANALYSIS: A systematic search of the databases Cochrane Central Register of Controlled Trials, Ovid MEDLINE, Ovid Embase, EBSCO CINAHL Plus and Web of Science was conducted to identify relevant studies from inception to October 2017. Outcomes of interest include duration of illness, severity of illness, complication, reconsultation and patient satisfaction. Study authors of eligible papers will be contacted and invited to contribute raw IPD data. IPD data will be checked against published data, harmonised and aggregated to create one large IPD database. Multilevel regression will be performed to explore interaction effects between treatment allocation and patient characteristics. The economic evaluation will be conducted based on IPD from the combined trial and observational studies to estimate the differences in costs and effectiveness for delayed prescribing compared with normal practice. A decision model will be developed to assess potential savings and cost-effectiveness in terms of reduced antibiotic usage of delayed prescribing and quality-adjusted life years. ETHICS AND DISSEMINATION: Ethical approval was obtained from the University of Southampton Faculty of Medicine Research Ethics Committee (Reference number: 30068). Findings of this study will be published in peer-reviewed academic journals as well as General Practice trade journals and will be presented at national and international conferences. The results will have important public health implications, shaping the way in which antibiotics are prescribed in the future and to whom delayed prescriptions are issued. PROSPERO REGISTRATION NUMBER: CRD42018079400

    Antibiotics for lower respiratory tract infection in children presenting in primary care: ARTIC-PC RCT

    No full text
    Background Antimicrobial resistance is a global health threat. Antibiotics are commonly prescribed for children with uncomplicated lower respiratory tract infections, but there is little randomised evidence to support the effectiveness of antibiotics in treating these infections, either overall or relating to key clinical subgroups in which antibiotic prescribing is common (chest signs; fever; physician rating of unwell; sputum/rattly chest; shortness of breath). Objectives To estimate the clinical effectiveness and cost-effectiveness of amoxicillin for uncomplicated lower respiratory tract infections in children both overall and in clinical subgroups. Design Placebo-controlled trial with qualitative, observational and cost-effectiveness studies. Setting UK general practices. Participants Children aged 1–12 years with acute uncomplicated lower respiratory tract infections. Outcomes The primary outcome was the duration in days of symptoms rated moderately bad or worse (measured using a validated diary). Secondary outcomes were symptom severity on days 2–4 (0 = no problem to 6 = as bad as it could be); symptom duration until very little/no problem; reconsultations for new or worsening symptoms; complications; side effects; and resource use. Methods Children were randomised to receive 50 mg/kg/day of oral amoxicillin in divided doses for 7 days, or placebo using pre-prepared packs, using computer-generated random numbers by an independent statistician. Children who were not randomised could participate in a parallel observational study. Semistructured telephone interviews explored the views of 16 parents and 14 clinicians, and the data were analysed using thematic analysis. Throat swabs were analysed using multiplex polymerase chain reaction. Results A total of 432 children were randomised (antibiotics, n = 221; placebo, n = 211). The primary analysis imputed missing data for 115 children. The duration of moderately bad symptoms was similar in the antibiotic and placebo groups overall (median of 5 and 6 days, respectively; hazard ratio 1.13, 95% confidence interval 0.90 to 1.42), with similar results for subgroups, and when including antibiotic prescription data from the 326 children in the observational study. Reconsultations for new or worsening symptoms (29.7% and 38.2%, respectively; risk ratio 0.80, 95% confidence interval 0.58 to 1.05), illness progression requiring hospital assessment or admission (2.4% vs. 2.0%) and side effects (38% vs. 34%) were similar in the two groups. Complete-case (n = 317) and per-protocol (n = 185) analyses were similar, and the presence of bacteria did not mediate antibiotic effectiveness. NHS costs per child were slightly higher (antibiotics, £29; placebo, £26), with no difference in non-NHS costs (antibiotics, £33; placebo, £33). A model predicting complications (with seven variables: baseline severity, difference in respiratory rate from normal for age, duration of prior illness, oxygen saturation, sputum/rattly chest, passing urine less often, and diarrhoea) had good discrimination (bootstrapped area under the receiver operator curve 0.83) and calibration. Parents found it difficult to interpret symptoms and signs, used the sounds of the child’s cough to judge the severity of illness, and commonly consulted to receive a clinical examination and reassurance. Parents acknowledged that antibiotics should be used only when ‘necessary’, and clinicians noted a reduction in parents’ expectations for antibiotics. Limitations The study was underpowered to detect small benefits in key subgroups. Conclusion Amoxicillin for uncomplicated lower respiratory tract infections in children is unlikely to be clinically effective or to reduce health or societal costs. Parents need better access to information, as well as clear communication about the self-management of their child’s illness and safety-netting. Future work The data can be incorporated in the Cochrane review and individual patient data meta-analysis.</p
    corecore