170 research outputs found

    TDP-43 pathology in a patient carrying G2019S LRRK2 mutation and a novel p.Q124E MAPT.

    Get PDF
    Leucine-rich repeat kinase 2 (LRRK2) mutation is the most common cause of genetic-related parkinsonism and is usually associated with Lewy body pathology; however, tau, α-synuclein, and ubiquitin pathologies have also been reported. We report the case of a patient carrying the LRRK2 G2019S mutation and a novel heterozygous variant c.370C>G, p.Q124E in exon 4 of the microtubule-associated protein tau (MAPT). The patient developed parkinsonism with good levodopa response in her 70s. Neuropathological analysis revealed nigral degeneration and Alzheimer-type tau pathology without Lewy bodies. Immunohistochemical staining using phospho-TDP-43 antibodies identified occasional TDP-43 pathology in the hippocampus, temporal neocortex, striatum, and substantia nigra. However, TDP-43 pathology was not identified in another 4 archival LRRK2 G2019S cases with Lewy body pathology available in the Queen Square Brain Bank. Among other published cases of patients carrying LRRK2 G2019S mutation, only 3 were reportedly evaluated for TDP-43 pathology, and the results were negative. The role of the MAPT variant in the clinical and pathological manifestation in LRRK2 cases remains to be determined

    Prevalence of C9orf72 hexanucleotide repeat expansion in Greek patients with sporadic ALS

    Get PDF
    A total of 178 consecutive patients with definite sALS without frontotemporal dementia (FTD) were enrolled in this study, after complete clinical evaluation. A Repeat-Primed Polymerase Chain Reaction (RP-PCR) protocol was applied to detect the G4C2 repeats expansions. In the studied sALS patients, 5.06% (n = 9) carried the C9orf72 mutation. Among carriers, 2/3 of them were females and spinal onset accounted for 78% and bulbar for 22%, while the mean age of onset was about 60 years. Our study showed that the prevalence of C9orf72 repeat expansion in Greek sALS patients is similar to the overall frequency of the mutation in European populations. The pathogenic mutation remains a promising biomarker for genetic testing and targeted treatment

    Neither Replication nor Simulation Supports a Role for the Axon Guidance Pathway in the Genetics of Parkinson's Disease

    Get PDF
    Susceptibility to sporadic Parkinson's disease (PD) is thought to be influenced by both genetic and environmental factors and their interaction with each other. Statistical models including multiple variants in axon guidance pathway genes have recently been purported to be capable of predicting PD risk, survival free of the disease and age at disease onset; however the specific models have not undergone independent validation. Here we tested the best proposed risk panel of 23 single nucleotide polymorphisms (SNPs) in two PD sample sets, with a total of 525 cases and 518 controls. By single marker analysis, only one marker was significantly associated with PD risk in one of our sample sets (rs6692804: P = 0.03). Multi-marker analysis using the reported model found a mild association in one sample set (two sided P = 0.049, odds ratio for each score change = 1.07) but no significance in the other (two sided P = 0.98, odds ratio = 1), a stark contrast to the reported strong association with PD risk (P = 4.64×10−38, odds ratio as high as 90.8). Following a procedure similar to that used to build the reported model, simulated multi-marker models containing SNPs from randomly chosen genes in a genome wide PD dataset produced P-values that were highly significant and indistinguishable from similar models where disease status was permuted (3.13×10−23 to 4.90×10−64), demonstrating the potential for overfitting in the model building process. Together, these results challenge the robustness of the reported panel of genetic markers to predict PD risk in particular and a role of the axon guidance pathway in PD genetics in general

    SORL1 mutation in a Greek family with Parkinson's disease and dementia

    Get PDF
    Whole exome sequencing and linkage analysis were performed in a three generational pedigree of Greek origin with a broad phenotypic spectrum spanning from Parkinson’s disease and Parkinson’s disease dementia to dementia of mixed type (Alzheimer disease and vascular dementia). We identified a novel heterozygous c.G1135T (p.G379W) variant in SORL1 which segregated with the disease in the family. Mutation screening in sporadic Greek PD cases identified one additional individual with the mutation, sharing the same 12.8Mb haplotype. Our findings provide support for SORL1 mutations resulting in a broad range of additional phenotypes and warrants further studies in neurodegenerative diseases beyond AD

    Novel single base-pair deletion in exon 1 of XK gene leading to McLeod syndrome with chorea, muscle wasting, peripheral neuropathy, acanthocytosis and haemolysis.

    Get PDF
    We present a 70-year-old male patient of Greek origin with choreatic movements of the tongue and face, lower limb muscle weakness, peripheral neuropathy, elevated creatinephosphokinase (CPK), acanthocytosis and haemolysis in the absence of Kell RBC antigens with an additional Factor IX-deficiency. Genetic testing for mutations in the three exons of the XK gene revealed a previously unreported hemizygous single base-pair frameshift deletion at exon 1 (c.229delC, p.Leu80fs). In conclusion, we hereby describe a rare phenotype of a patient with McLeod syndrome which was discovered coincidentally during routine blood group testing and consecutively genetically confirmed

    Post-COVID-19 Parkinsonism and Parkinson's Disease Pathogenesis: The Exosomal Cargo Hypothesis

    Get PDF
    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease, globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19), caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological sequalae appear insidious and potentially long-lasting. Exosomes are extracellular nanovesicles bearing a complex cargo of active biomolecules and playing crucial roles in intercellular communication under pathophysiological conditions. Exosomes constitute a reliable route for misfolded protein transmission, contributing to PD pathogenesis and diagnosis. Herein, we summarize recent evidence suggesting that SARS-CoV-2 infection shares numerous clinical manifestations and inflammatory and molecular pathways with PD. We carry on hypothesizing that these similarities may be reflected in exosomal cargo modulated by the virus in correlation with disease severity. Travelling from the periphery to the brain, SARS-CoV-2-related exosomal cargo contains SARS-CoV-2 RNA, viral proteins, inflammatory mediators, and modified host proteins that could operate as promoters of neurodegenerative and neuroinflammatory cascades, potentially leading to a future parkinsonism and PD development

    The MAPT p.A152T variant is a risk factor associated with tauopathies with atypical clinical and neuropathological features.

    Get PDF
    Microtubule-associated protein tau (MAPT) mutations have been shown to underlie frontotemporal dementia and a variety of additional sporadic tauopathies. We identified a rare p.A152T variant in MAPT exon 7 in two (of eight) patients with clinical presentation of parkinsonism and postmortem finding of neurofibrillary tangle pathology. Two siblings of one patient also carried the p.A152T variant, and both have progressive cognitive impairment. Further screening identified the variant in two other cases: one with pathologically confirmed corticobasal degeneration and another with the diagnosis of Parkinson's disease with dementia. The balance of evidence suggests this variant is associated with disease, but the very varied phenotype of the cases with the mutation is not consistent with it being a fully penetrant pathogenic mutation. Interestingly, this variation results in the creation of a new phosphorylation site that could cause reduced microtubule binding. We suggest that the A152T variant is a risk factor associated with the development of atypical neurodegenerative conditions with abnormal tau accumulation

    A homozygous MED11 C-terminal variant causes a lethal neurodegenerative disease

    Get PDF
    Purpose: The mediator (MED) multisubunit-complex modulates the activity of the transcriptional machinery, and genetic defects in different MED subunits (17, 20, 27) have been implicated in neurologic diseases. In this study, we identified a recurrent homozygous variant in MED11 (c.325C>T; p.Arg109Ter) in 7 affected individuals from 5 unrelated families. Methods: To investigate the genetic cause of the disease, exome or genome sequencing were performed in 5 unrelated families identified via different research networks and Matchmaker Exchange. Deep clinical and brain imaging evaluations were performed by clinical pediatric neurologists and neuroradiologists. The functional effect of the candidate variant on both MED11 RNA and protein was assessed using reverse transcriptase polymerase chain reaction and western blotting using fibroblast cell lines derived from 1 affected individual and controls and through computational approaches. Knockouts in zebrafish were generated using clustered regularly interspaced short palindromic repeats/Cas9. Results: The disease was characterized by microcephaly, profound neurodevelopmental impairment, exaggerated startle response, myoclonic seizures, progressive widespread neurodegeneration, and premature death. Functional studies on patient-derived fibroblasts did not show a loss of protein function but rather disruption of the C-terminal of MED11, likely impairing binding to other MED subunits. A zebrafish knockout model recapitulates key clinical phenotypes. Conclusion: Loss of the C-terminal of MED subunit 11 may affect its binding efficiency to other MED subunits, thus implicating the MED-complex stability in brain development and neurodegeneration

    Genome-wide structural variant analysis identifies risk loci for non-Alzheimer's dementias

    Get PDF
    We characterized the role of structural variants, a largely unexplored type of genetic variation, in two non-Alzheimer's dementias, namely Lewy body dementia (LBD) and frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS). To do this, we applied an advanced structural variant calling pipeline (GATK-SV) to short-read whole-genome sequence data from 5,213 European-ancestry cases and 4,132 controls. We discovered, replicated, and validated a deletion in TPCN1 as a novel risk locus for LBD and detected the known structural variants at the C9orf72 and MAPT loci as associated with FTD/ALS. We also identified rare pathogenic structural variants in both LBD and FTD/ALS. Finally, we assembled a catalog of structural variants that can be mined for new insights into the pathogenesis of these understudied forms of dementia
    • …
    corecore