6,081 research outputs found

    Bayesian Inference under Cluster Sampling with Probability Proportional to Size

    Full text link
    Cluster sampling is common in survey practice, and the corresponding inference has been predominantly design-based. We develop a Bayesian framework for cluster sampling and account for the design effect in the outcome modeling. We consider a two-stage cluster sampling design where the clusters are first selected with probability proportional to cluster size, and then units are randomly sampled inside selected clusters. Challenges arise when the sizes of nonsampled cluster are unknown. We propose nonparametric and parametric Bayesian approaches for predicting the unknown cluster sizes, with this inference performed simultaneously with the model for survey outcome. Simulation studies show that the integrated Bayesian approach outperforms classical methods with efficiency gains. We use Stan for computing and apply the proposal to the Fragile Families and Child Wellbeing study as an illustration of complex survey inference in health surveys

    Effects of the liquid-gas phase transition and cluster formation on the symmetry energy

    Full text link
    Various definitions of the symmetry energy are introduced for nuclei, dilute nuclear matter below saturation density and stellar matter, which is found in compact stars or core-collapse supernovae. The resulting differences are exemplified by calculations in a theoretical approach based on a generalized relativistic density functional for dense matter. It contains nucleonic clusters as explicit degrees of freedom with medium dependent properties that are derived for light clusters from a quantum statistical approach. With such a model the dissolution of clusters at high densities can be described. The effects of the liquid-gas phase transition in nuclear matter and of cluster formation in stellar matter on the density dependence of the symmetry energy are studied for different temperatures. It is observed that correlations and the formation of inhomogeneous matter at low densities and temperatures causes an increase of the symmetry energy as compared to calculations assuming a uniform uncorrelated spatial distribution of constituent baryons and leptons.Comment: 20 pages, 19 figures, version accepted for publication in EPJA special volume on Nuclear Symmetry Energ

    X-ray tracing using Geant4

    Full text link
    We describe an extension to the Geant4 software package that allows it to be used as a general purpose X-ray tracing package. We demonstrate its use by building a model of the X-ray optics of the XMM-Newton, calculating its effective area, and comparing the results with the published calibration curves.Comment: 9 pages, 5 figures, accepted for publication by NIMA, DOI know

    Composition and thermodynamics of nuclear matter with light clusters

    Full text link
    We investigate nuclear matter at finite temperature and density, including the formation of light clusters up to the alpha particle The novel feature of this work is to include the formation of clusters as well as their dissolution due to medium effects in a systematic way using two many-body theories: a microscopic quantum statistical (QS) approach and a generalized relativistic mean field (RMF) model. Nucleons and clusters are modified by medium effects. Both approaches reproduce the limiting cases of nuclear statistical equilibrium (NSE) at low densities and cluster-free nuclear matter at high densities. The treatment of the cluster dissociation is based on the Mott effect due to Pauli blocking, implemented in slightly different ways in the QS and the generalized RMF approaches. We compare the numerical results of these models for cluster abundances and thermodynamics in the region of medium excitation energies with temperatures T <= 20 MeV and baryon number densities from zero to a few times saturation density. The effect of cluster formation on the liquid-gas phase transition and on the density dependence of the symmetry energy is studied. Comparison is made with other theoretical approaches, in particular those, which are commonly used in astrophysical calculations. The results are relevant for heavy-ion collisions and astrophysical applications.Comment: 32 pages, 15 figures, minor corrections, accepted for publication in Physical Review

    Mechanisms for Direct Breakup Reactions

    Get PDF
    We review some simple mechanisms of breakup in nuclear reactions. We mention the spectator breakup, which is described in the post-form DWBA. The relation to other formulations is also indicated. An especially important mechanism is Coulomb dissociation. It is a distinct advantage that the perturbation due to the electric field of the nucleus is exactly known. Therefore firm conclusions can be drawn from such measurements. Some new applications of Coulomb dissociation for nuclear astrophysics are discussed.Comment: 17 pages, 5 figures, to appear in the proceedings of the RCNP-TMU Symposium on Spins in Nuclear and Hadronic Reactions, October 16-18 199
    corecore