15 research outputs found

    Mapping of water-related ecosystem services in the uMngeni catchment using a daily time-step hydrological model for prioritisation of ecological infrastructure investment – Part 1: Context and modelling approach

    Get PDF
    South Africa is a semi-arid country which frequently faces water shortages, and experienced a severe drought in the 2016 and 2017 rainfall seasons. Government is under pressure to continue to deliver clean water to the growing population at a high assurance of supply. Studies now show that the delivery of water may be sustained not only through built infrastructure such as dams and pipelines, but also through investment in ecological infrastructure (EI). A daily time-step hydrological model was used to map areas which should be prioritised for protection or rehabilitation to sustain the delivery of water-related ecosystem services within the uMngeni catchment. We focused on three water-related ecosystem services, i.e.: water supply, sustained baseflow, erosion control/avoidance of excessive sediment losses. The two key types of degradation were modelled, namely, overgrazing and the invasion of upland areas by Black Wattle (Acacia mearnsii). This, Part 1 of a paper in 2 parts, provides a discussion on the role of EI in delivering water-related ecosystem services, describes the motivation for the study, and the methods used in modelling and mapping the catchment. The results of this modelling exercise are presented in Part 2, which also explores and illustrates the potential hydrological benefits of rehabilitation and protection of EI in the uMngeni Catchment.Keywords: water, ecosystem services, hydrological modelling, ecological infrastructure, water securit

    Utilisation of maternity services by black women in rural and urban areas of the Orange Free State

    Get PDF
    An epidemiological survey was undertaken to evaluate the utilisation of maternal services for black women in the Orange Free State. Two hundred and forty clusters were selected from the rural (farms) and urban (local authorities) black population and eight households were interviewed in each cluster. Information was gathered from 237 rural women (from 959 households) and 168 urban women (from 926 households) who had delivered a baby or aborted during the preceding year. Antenatal care was received by 71 % of the rural women and 87% of the urban women. Rural women delivered at home in 60% of cases while 37% delivered in hospitals. Only 23% of urban women delivered at home while 67% of their deliveries were conducted in hospitals. Nurses supervised deliveries in both instances in more than 60% of cases, but in rural areas traditional midwives managed 26% of the confinements. The conclusions are that the maternity service was largely provided by nurses and was predominantly limited to hospitals and homes. It is recommended that the quality of service be upgraded and more emphasis placed on midwife obstetric units

    Mapping of water-related ecosystem services in the uMngeni catchment using a daily time-step hydrological model for prioritisation of ecological infrastructure investment – Part 2: Outputs

    Get PDF
    South Africa is a semi-arid country which frequently faces water shortages, and experienced a severe drought in the 2016 and 2017 rainfall seasons. Government is under pressure to continue to deliver clean water to the growing population at a high assurance of supply. Studies now show that the delivery of water may be sustained not only through built infrastructure such as dams and pipelines, but also through investment in ecological infrastructure (EI). Part 1 of this paper in 2 parts concentrated on the role of EI in delivering water-related ecosystem services, as well as the motivation for this study, and the methods used in modelling and mapping the catchment. Part 2 explores and illustrates the current level of delivery of water-related ecosystem services in different parts of the catchment, with potential hydrological benefits of rehabilitation and protection of EI in the uMngeni catchment. The Mpendle, Lions River, Karkloof, Inanda and Durban sub-catchments are important areas for the generation of streamflows which accumulate downstream (i.e. water yield in the catchment) when annual totals are considered. Modelled annual sediment yield (in tonnes) from naturally vegetated areas is most severe in the lower catchment areas with steeper slopes such as Inanda, and in the high-altitude areas which have both steeper slopes and higher rainfall. The central and eastern parts of the uMngeni catchment were found to contribute the greatest yield of sediment from degraded areas with low protective vegetation cover. This combined modelling and mapping exercise highlighted areas of priority ecosystem service delivery, such as higher altitude grassland areas, which could be recommended for formal conservation, or protection under private partnerships. Generally, these areas confirm the intuitive sense of catchment stakeholders, but provide a robust and more defendable analysis through which water volumes are quantifiable, and potential investment into catchment interventions are justified.Keywords: water, ecosystem services, hydrological modelling, ecological infrastructure, rehabilitatio

    Mapping of water-related ecosystem services in the uMngeni catchment using a daily time-step hydrological model for prioritisation of ecological infrastructure investment – Part 2: Outputs

    No full text
    South Africa is a semi-arid country which frequently faces water shortages, and experienced a severe drought in the 2016 and 2017 rainfall seasons. Government is under pressure to continue to deliver clean water to the growing population at a high assurance of supply. Studies now show that the delivery of water may be sustained not only through built infrastructure such as dams and pipelines, but also through investment in ecological infrastructure (EI). Part 1 of this paper in 2 parts concentrated on the role of EI in delivering water-related ecosystem services, as well as the motivation for this study, and the methods used in modelling and mapping the catchment. Part 2 explores and illustrates the current level of delivery of water-related ecosystem services in different parts of the catchment, with potential hydrological benefits of rehabilitation and protection of EI in the uMngeni catchment. The Mpendle, Lions River, Karkloof, Inanda and Durban sub-catchments are important areas for the generation of streamflows which accumulate downstream (i.e. water yield in the catchment) when annual totals are considered. Modelled annual sediment yield (in tonnes) from naturally vegetated areas is most severe in the lower catchment areas with steeper slopes such as Inanda, and in the high-altitude areas which have both steeper slopes and higher rainfall. The central and eastern parts of the uMngeni catchment were found to contribute the greatest yield of sediment from degraded areas with low protective vegetation cover. This combined modelling and mapping exercise highlighted areas of priority ecosystem service delivery, such as higher altitude grassland areas, which could be recommended for formal conservation, or protection under private partnerships. Generally, these areas confirm the intuitive sense of catchment stakeholders, but provide a robust and more defendable analysis through which water volumes are quantifiable, and potential investment into catchment interventions are justified

    Mapping of water-related ecosystem services in the uMngeni catchment using a daily time-step hydrological model for prioritisation of ecological infrastructure investment – Part 1: Context and modelling approach

    No full text
    South Africa is a semi-arid country which frequently faces water shortages, and experienced a severe drought in the 2016 and 2017 rainfall seasons. Government is under pressure to continue to deliver clean water to the growing population at a high assurance of supply. Studies now show that the delivery of water may be sustained not only through built infrastructure such as dams and pipelines, but also through investment in ecological infrastructure (EI). A daily time-step hydrological model was used to map areas which should be prioritised for protection or rehabilitation to sustain the delivery of water-related ecosystem services within the uMngeni catchment. We focused on three water-related ecosystem services, i.e.: water supply, sustained baseflow, erosion control/avoidance of excessive sediment losses. The two key types of degradation were modelled, namely, overgrazing and the invasion of upland areas by Black Wattle (Acacia mearnsii). This, Part 1 of a paper in 2 parts, provides a discussion on the role of EI in delivering water-related ecosystem services, describes the motivation for the study, and the methods used in modelling and mapping the catchment. The results of this modelling exercise are presented in Part 2, which also explores and illustrates the potential hydrological benefits of rehabilitation and protection of EI in the uMngeni Catchment
    corecore