1,573 research outputs found

    A liquid state theory that remains successful in the critical region

    Full text link
    A thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA) is applied to a fluid of spherical particles with a pair potential given by a hard-core repulsion and a Yukawa attractive tail w(r)=exp[z(r1)]/rw(r)=-\exp [-z(r-1)]/r. This potential allows one to take advantage of the known analytical properties of the solution to the Ornstein-Zernike equation for the case in which the direct correlation function outside the repulsive core is given by a linear combination of two Yukawa tails and the radial distribution function g(r)g(r) satisfies the exact core condition g(r)=0g(r)=0 for r<1r<1. The predictions for the thermodynamics, the critical point, and the coexistence curve are compared here to other theories and to simulation results. In order to unambiguously assess the ability of the SCOZA to locate the critical point and the phase boundary of the system, a new set of simulations has also been performed. The method adopted combines Monte Carlo and finite-size scaling techniques and is especially adapted to deal with critical fluctuations and phase separation. It is found that the version of the SCOZA considered here provides very good overall thermodynamics and a remarkably accurate critical point and coexistence curve. For the interaction range considered here, given by z=1.8z=1.8, the critical density and temperature predicted by the theory agree with the simulation results to about 0.6%.Comment: Prepared for the John Barker festschrift issue of Molecular Physics. 22 pages Latex, 6 ps figure

    Liquid-gas phase behaviour of an argon-like fluid modelled by the hard-core two-Yukawa potential

    Full text link
    We study a model for an argon-like fluid parameterised in terms of a hard-core repulsion and a two-Yukawa potential. The liquid-gas phase behaviour of the model is obtained from the thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA) of Hoye and Stell, the solution of which lends itself particularly well to a pair potential of this form. The predictions for the critical point and the coexistence curve are compared to new high resolution simulation data and to other liquid-state theories, including the hierarchical reference theory (HRT) of Parola and Reatto. Both SCOZA and HRT deliver results that are considerably more accurate than standard integral-equation approaches. Among the versions of SCOZA considered, the one yielding the best agreement with simulation successfully predicts the critical point parameters to within 1%.Comment: 10 pages 6 figure

    Liquid-vapor interface of a polydisperse fluid

    Full text link
    We report a Grand Canonical Monte Carlo simulation study of the liquid-vapor interface of a model fluid exhibiting polydispersity in terms of the particle size σ\sigma. The bulk density distribution, ρ0(σ)\rho^0(\sigma), of the system is controlled by the imposed chemical potential distribution μ(σ)\mu(\sigma). We choose the latter such that ρ0(σ)\rho^0(\sigma) assumes a Schulz form with associated degree of polydispersity 14\approx 14%. By introducing a smooth attractive wall, a planar liquid-vapor interface is formed for bulk state points within the region of liquid-vapor coexistence. Owing to fractionation, the pure liquid phase is enriched in large particles, with respect to the coexisting vapor. We investigate how the spatial non-uniformity of the density near the liquid-vapor interface affects the evolution of the local distribution of particle sizes between the limiting pure phase forms. We find (as previously predicted by density functional theory, Bellier-Castella {\em et al}, Phys. Rev. {\bf E65}, 021503 (2002)) a segregation of smaller particles to the interface. The magnitude of this effect is quantified for various σ\sigma via measurements of the relative adsorption. Additionally, we consider the utility of various estimators for the interfacial width and highlight the difficulties of isolating the intrinsic contribution of polydispersity to this width.Comment: 9 pages, 10 Fig

    Wetting transitions in polydisperse fluids

    Full text link
    The properties of the coexisting bulk gas and liquid phases of a polydisperse fluid depend not only on the prevailing temperature, but also on the overall parent density. As a result, a polydisperse fluid near a wall will exhibit density-driven wetting transitions inside the coexistence region. We propose a likely topology for the wetting phase diagram, which we test using Monte Carlo simulations of a model polydisperse fluid at an attractive wall, tracing the wetting line inside the cloud curve and identifying the relationship to prewetting.Comment: 4 Pages, 4 figures. Accepted for publication in Physical Review Letter

    Accurate simulation estimates of cloud points of polydisperse fluids

    Full text link
    We describe two distinct approaches to obtaining cloud point densities and coexistence properties of polydisperse fluid mixtures by Monte Carlo simulation within the grand canonical ensemble. The first method determines the chemical potential distribution μ(σ)\mu(\sigma) (with σ\sigma the polydisperse attribute) under the constraint that the ensemble average of the particle density distribution ρ(σ)\rho(\sigma) matches a prescribed parent form. Within the region of phase coexistence (delineated by the cloud curve) this leads to a distribution of the fluctuating overall particle density n, p(n), that necessarily has unequal peak weights in order to satisfy a generalized lever rule. A theoretical analysis shows that as a consequence, finite-size corrections to estimates of coexistence properties are power laws in the system size. The second method assigns μ(σ)\mu(\sigma) such that an equal peak weight criterion is satisfied for p(n)forallpointswithinthecoexistenceregion.However,sinceequalvolumesofthecoexistingphasescannotsatisfytheleverrulefortheprescribedparent,theirrelativecontributionsmustbeweightedappropriatelywhendetermining for all points within the coexistence region. However, since equal volumes of the coexisting phases cannot satisfy the lever rule for the prescribed parent, their relative contributions must be weighted appropriately when determining \mu(\sigma)$. We show how to ascertain the requisite weight factor operationally. A theoretical analysis of the second method suggests that it leads to finite-size corrections to estimates of coexistence properties which are {\em exponentially small} in the system size. The scaling predictions for both methods are tested via Monte Carlo simulations of a novel polydisperse lattice gas model near its cloud curve, the results showing excellent quantitative agreement with the theory.Comment: 8 pages, 6 figure

    A conceptual framework to assess the impact of training on equipment cost and availability in the military context

    Get PDF
    Designing military support is challenging and current practices need to be reviewed and improved. This paper gives an overview of the Industry current practices in designing military support under Ministry of Defence/Industry agreements (in particular for Contracting for Availability (CfA)), and identifies challenges and opportunities for improvement. E.g. training delivery was identified as an important opportunity for improving the CfA in-service phase. Thus, an innovative conceptual framework is presented to assess the impact of training on the equipment availability and cost. Additionally, guidelines for improving the current training delivery strategies are presented, which can also be applied to other Industry contexts

    Free energies of crystalline solids: a lattice-switch Monte Carlo method

    Full text link
    We present a method for the direct evaluation of the difference between the free energies of two crystalline structures, of different symmetry. The method rests on a Monte Carlo procedure which allows one to sample along a path, through atomic-displacement-space, leading from one structure to the other by way of an intervening transformation that switches one set of lattice vectors for another. The configurations of both structures can thus be sampled within a single Monte Carlo process, and the difference between their free energies evaluated directly from the ratio of the measured probabilities of each. The method is used to determine the difference between the free energies of the fcc and hcp crystalline phases of a system of hard spheres.Comment: 5 pages Revtex, 3 figure

    Phase behaviour and particle-size cutoff effects in polydisperse fluids

    Full text link
    We report a joint simulation and theoretical study of the liquid-vapor phase behaviour of a fluid in which polydispersity in the particle size couples to the strength of the interparticle interactions. Attention is focussed on the case in which the particles diameters are distributed according to a fixed Schulz form with degree of polydispersity δ=14\delta=14%. The coexistence properties of this model are studied using grand canonical ensemble Monte Carlo simulations and moment free energy calculations. We obtain the cloud and shadow curves as well as the daughter phase density distributions and fractional volumes along selected isothermal dilution lines. In contrast to the case of size-{\em independent} interaction strengths (N.B. Wilding, M. Fasolo and P. Sollich, J. Chem. Phys. {\bf 121}, 6887 (2004)), the cloud and shadow curves are found to be well separated, with the critical point lying significantly below the cloud curve maximum. For densities below the critical value, we observe that the phase behaviour is highly sensitive to the choice of upper cutoff on the particle size distribution. We elucidate the origins of this effect in terms of extremely pronounced fractionation effects and discuss the likely appearance of new phases in the limit of very large values of the cutoff.Comment: 12 pages, 15 figure

    Cosmic ray propagation and star formation history of NGC 1961

    Get PDF
    We present new radio continuum data at 4 frequencies on the supermassive, peculiar galaxy NGC 1961. These observations allow us to separate the thermal and the nonthermal radio emission and to determine the nonthermal spectral index distribution. This spectral index distribution in the galactic disk is unusual: at the maxima of the radio emission the synchrotron spectrum is very steep, indicating aged cosmic ray electrons. Away from the maxima the spectrum is much flatter. The steep spectrum of the synchrotron emission at the maxima indicates that a strong decline of the star formation rate has taken place at these sites. The extended radio emission is a sign of recent cosmic ray acceleration, probably by recent star formation. We suggest that a violent event in the past, most likely a merger or a collision with an intergalactic gas cloud, has caused the various unusual features of the galaxy.Comment: 9 pages, latex with MN-macros, 20 figures, accepted for publication in MNRA
    corecore