80 research outputs found

    Presence of apoptotic and nonapoptotic disseminated tumor cells reflects the response to neoadjuvant systemic therapy in breast cancer

    Get PDF
    INTRODUCTION: Neoadjuvant systemic therapy (NST) is an established strategy to reduce tumor size in breast cancer patients prior to breast-conserving therapy. The effect of NST on tumor cell dissemination in these patients is not known. The aim of this study was to investigate the incidence of disseminated tumor cells (DTC), including apoptotic DTC, in breast cancer patients after NST, and to investigate the correlation of DTC status with therapy response. METHODS: Bone marrow aspiration was performed in 157 patients after NST. DTC were detected by immunocytochemistry using the A45–B/B3 anticytokeratin antibody. To detect apoptotic DTC the antibody M30 (Roche Diagnostics, Germany) was used, which detects a neo-epitope expressed only after caspase cleavage of cytokeratin 18 during early apoptosis. RESULTS: The incidence of DTC in breast cancer patients was 53% after completion of NST. Tumor dissemination was observed more frequently in patients with no change/progressive disease (69%) than in patients with partial remission or complete remission of the primary tumor (46%) (P < 0.05). Ten out of 24 patients with complete remission, however, were still bone marrow positive. Apoptotic DTC were present in 36 of 157 (23%) breast cancer patients. Apoptotic cells only were detected in 14% of the patients with partial remission or complete remission, but were detected in just 5% of the patients with stable disease. Apoptotic DTC were detectable in none of the patients with tumor progression. CONCLUSION: The pathological therapy response in breast cancer patients is reflected by the presence of apoptotic DTC. Patients with complete remission, however, may still have nonapoptotic DTC. These patients may also benefit from secondary adjuvant therapy

    Allele-specific disparity in breast cancer

    Get PDF
    Background In a cancer cell the number of copies of a locus may vary due to amplification and deletion and these variations are denoted as copy number alterations (CNAs). We focus on the disparity of CNAs in tumour samples, which were compared to those in blood in order to identify the directional loss of heterozygosity. Methods We propose a numerical algorithm and apply it to data from the Illumina 109K-SNP array on 112 samples from breast cancer patients. B-allele frequency (BAF) and log R ratio (LRR) of Illumina were used to estimate Euclidian distances. For each locus, we compared genotypes in blood and tumour for subset of samples being heterozygous in blood. We identified loci showing preferential disparity from heterozygous toward either the A/B-allele homozygous (allelic disparity). The chi-squared and Cochran-Armitage trend tests were used to examine whether there is an association between high levels of disparity in single nucleotide polymorphisms (SNPs) and molecular, clinical and tumour-related parameters. To identify pathways and network functions over-represented within the resulting gene sets, we used Ingenuity Pathway Analysis (IPA). Results To identify loci with a high level of disparity, we selected SNPs 1) with a substantial degree of disparity and 2) with substantial frequency (at least 50% of the samples heterozygous for the respective locus). We report the overall difference in disparity in high-grade tumours compared to low-grade tumours (p-value < 0.001) and significant associations between disparity in multiple single loci and clinical parameters. The most significantly associated network functions within the genes represented in the loci of disparity were identified, including lipid metabolism, small-molecule biochemistry, and nervous system development and function. No evidence for over-representation of directional disparity in a list of stem cell genes was obtained, however genes appeared to be more often altered by deletion than by amplification. Conclusions Our data suggest that directional loss and amplification exist in breast cancer. These are highly associated with grade, which may indicate that they are enforced with increasing number of cell divisions. Whether there is selective pressure for some loci to be preferentially amplified or deleted remains to be confirmed

    Recent translational research: circulating tumor cells in breast cancer patients

    Get PDF
    In breast cancer patients, hematogenous tumor cell dissemination can be detected, even at the single cell level, by applying immunocytochemical and molecular assays. Various methods for the detection of circulating tumor cells in the peripheral blood have been described. Results from recently reported studies suggest that circulating tumor cell levels may serve as a prognostic marker and for the early assessment of therapeutic response in patients with metastatic breast cancer. However, in early-stage breast cancer, the impact of circulating tumor cells is less well established than the presence of disseminated tumor cells in bone marrow; several clinical studies have demonstrated that cells of the latter type are an independent prognostic factor at primary diagnosis. In this article we briefly summarize recent studies examining the presence of circulating tumor cells in the blood and discuss further clinical applications

    Enrichment methods to detect bone marrow micrometastases in breast carcinoma patients: clinical relevance

    Get PDF
    INTRODUCTION: Improving technologies for the detection and purification of bone marrow (BM) micrometastatic cells in breast cancer patients should lead to earlier prognosis of the risk of relapse and should make it possible to design more appropriate therapies. The technique used has to overcome the challenges resulting from the small number of target cells (one per million hematopoietic cells) and the heterogeneous expression of micrometastatic cell markers. In the present study, we have assessed the clinical relevance of current methods aimed at detecting rare disseminated carcinoma cells. METHODS: BM aspirates from 32 carcinoma patients were screened for the presence of micrometastatic cells positive for epithelial cell adhesion molecule and positive for cytokeratins, using optimized immunodetection methods. A comparison with data obtained for 46 control BM aspirates and a correlation with the clinical status of patients were performed. RESULTS: We developed a sensitive and efficient immunomagnetic protocol for the enrichment of BM micrometastases. This method was used to divide 32 breast carcinoma patients into three categories according to their epithelial cell adhesion molecule status. These categories were highly correlated with the recently revised American Joint Committee on Cancer staging system for breast cancer, demonstrating the clinical relevance of this simple and reliable immunomagnetic technique. We also evaluated immunocytochemical detection of cytokeratin-positive cells and cytomorphological parameters. Immunocytochemistry-based methods for the detection of BM micrometastases did not provide any information about the clinical status of patients, but helped to refine the immunomagnetic data by confirming the presence of micrometastases in some cases. We also tested a new density gradient centrifugation system, able to enrich the tumor fraction of BM specimens by twofold to threefold as compared with standard Ficoll methods. CONCLUSION: These improved methods for the detection of micrometastatic cells in patient BM should help clinicians to predict the clinical status of breast cancer patients at the time of surgery or treatment
    corecore