76 research outputs found
What do aquaporin knockout studies tell us about fluid transport in epithelia?
The investigation of near-isosmotic water transport in epithelia goes back over 100 years; however, debates over mechanism and pathway remain. Aquaporin (AQP) knockouts have been used by various research groups to test the hypothesis of an osmotic mechanism as well as to explore the paracellular versus transcellular pathway debate. Nonproportional reductions in the water permeability of a water-transporting epithelial cell (e.g., a reduction of around 80–90 %) compared to the reduction in overall water transport rate in the knockout animal (e.g., a reduction of 50–60 %) are commonly found. This nonproportionality has led to controversy over whether AQP knockout studies support or contradict the osmotic mechanism. Arguments raised for and against an interpretation supporting the osmotic mechanism typically have partially specified, implicit, or incorrect assumptions. We present a simple mathematical model of the osmotic mechanism with clear assumptions and, for models based on this mechanism, establish a baseline prediction of AQP knockout studies. We allow for deviations from isotonic/isosmotic conditions and utilize dimensional analysis to reduce the number of parameters that must be considered independently. This enables a single prediction curve to be used for multiple epithelial systems. We find that a simple, transcellular-only osmotic mechanism sufficiently predicts the results of knockout studies and find criticisms of this mechanism to be overstated. We note, however, that AQP knockout studies do not give sufficient information to definitively rule out an additional paracellular pathway
Relative effects of furosemide and ethacrynic acid on ion transport and energy metabolism in slices of rat kidney-cortex
The effects of furosemide and ethacrynic acid have been studied using slices of rat kidney cortex incubated in a Ringer medium. At concentrations from 0.2–2.0 mM, furosemide had no significant effect on the tissue ATP content or on the metabolism-dependent net movements of intracellular Na + , K + and Ca 2+ . It did, however, induce an increase in the net, outward movement of Cl − ; we suggest that this may have srisen from inhibition of a Cl − accumulating mechanism. In contrast, ethacrynic acid in the same concentration range caused marked reduction of cell respiration and ATP content and virtually total inhibitition of several processes of ion transport (Na + , Cl − and Ca 2+ loss, and K + uptake). Concentrations of furosemide greater than 5 mM caused marked inhibition of energy metabolism and transport of ions, and 10 mM furosemide had quantitatively similar effects to 2 mM ethacrynic acid. Electron micrographs of kidney-cortex slices treated with the diuretics at 2 mM show that the ultrastructure was well maintained in the presence of furosemide but that ethacrynic acid caused severe structural disorganisation and necrosis. The mitochondria were generally in the orthodox configuration in the presence of furosemide, but swollen in ethacrynic acid in accord with the marked effects of 2 mM ethacrynate on mitochondrial energy metabolism. Of the effects we have detected, that of low concentrations of furosemide on Cl − movement appears to be rather specific. Higher concentrations of this agent (5 mM and above), and all concentrations of ethacrynic acid studied (0.1–5.0 mM), have several inhibitory effects which seem to result from primary inhibition of mitochondrial activities and are presumably manifestations of toxicity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46309/1/210_2004_Article_BF00506264.pd
Metabolic Programming during Lactation Stimulates Renal Na+ Transport in the Adult Offspring Due to an Early Impact on Local Angiotensin II Pathways
BACKGROUND: Several studies have correlated perinatal malnutrition with diseases in adulthood, giving support to the programming hypothesis. In this study, the effects of maternal undernutrition during lactation on renal Na(+)-transporters and on the local angiotensin II (Ang II) signaling cascade in rats were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Female rats received a hypoproteic diet (8% protein) throughout lactation. Control and programmed offspring consumed a diet containing 20% protein after weaning. Programming caused a decrease in the number of nephrons (35%), in the area of the Bowman's capsule (30%) and the capillary tuft (30%), and increased collagen deposition in the cortex and medulla (by 175% and 700%, respectively). In programmed rats the expression of (Na(+)+K(+))ATPase in proximal tubules increased by 40%, but its activity was doubled owing to a threefold increase in affinity for K(+). Programming doubled the ouabain-insensitive Na(+)-ATPase activity with loss of its physiological response to Ang II, increased the expression of AT(1) and decreased the expression of AT(2) receptors), and caused a pronounced inhibition (90%) of protein kinase C activity with decrease in the expression of the α (24%) and ε (13%) isoforms. Activity and expression of cyclic AMP-dependent protein kinase decreased in the same proportion as the AT(2) receptors (30%). In vivo studies at 60 days revealed an increased glomerular filtration rate (GFR) (70%), increased Na(+) excretion (80%) and intense proteinuria (increase of 400% in protein excretion). Programmed rats, which had normal arterial pressure at 60 days, became hypertensive by 150 days. CONCLUSIONS/SIGNIFICANCE: Maternal protein restriction during lactation results in alterations in GFR, renal Na(+) handling and in components of the Ang II-linked regulatory pathway of renal Na(+) reabsorption. At the molecular level, they provide a framework for understanding how metabolic programming of renal mechanisms contributes to the onset of hypertension in adulthood
- …