32 research outputs found

    In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2

    Get PDF
    In vertebrates and bacteria, heparosan the precursor of heparin is synthesized by glycosyltransferases via the stepwise addition of UDP-N-acetylglucosamine and UDP-glucuronic acid. As heparin-like molecules represent a great interest in the pharmaceutical area, the cryptic Pasteurella multocida heparosan synthase PmHS2 found to catalyze heparosan synthesis using substrate analogs has been studied. In this paper, we report an efficient way to purify PmHS2 and to maintain its activity stable during 6 months storage at −80 °C using His-tag purification and a desalting step. In the presence of 1 mM of each nucleotide sugar, purified PmHS2 synthesized polymers up to an average molecular weight of 130 kDa. With 5 mM of UDP-GlcUA and 5 mM of UDP-GlcNAc, an optimal specific activity, from 3 to 6 h of incubation, was found to be about 0.145 nmol/μg/min, and polymers up to an average of 102 kDa were synthesized in 24 h. In this study, we show that the chain length distribution of heparosan polymers can be controlled by change of the initial nucleotide sugar concentration. It was observed that low substrate concentration favors the formation of high molecular weight heparosan polymer with a low polydispersity while high substrate concentration did the opposite. Similarities in the polymerization mechanism between PmHS2, PmHS1, and PmHAS are discussed

    Chlamydia trachomatis Infection and Anti-Hsp60 Immunity: The Two Sides of the Coin

    Get PDF
    Chlamydia trachomatis (CT) infection is one of the most common causes of reproductive tract diseases and infertility. CT-Hsp60 is synthesized during infection and is released in the bloodstream. As a consequence, immune cells will produce anti-CT-Hsp60 antibodies. Hsp60, a ubiquitous and evolutionarily conserved chaperonin, is normally sequestered inside the cell, particularly into mitochondria. However, upon cell stress, as well as during carcinogenesis, the chaperonin becomes exposed on the cell surface (sf-Hsp60) and/or is secreted from cells into the extracellular space and circulation. Reports in the literature on circulating Hsp and anti-Hsp antibodies are in many cases short on details about Hsp60 concentrations, and about the specificity spectra of the antibodies, their titers, and their true, direct, pathogenetic effects. Thus, more studies are still needed to obtain a definitive picture on these matters. Nevertheless, the information already available indicates that the concurrence of persistent CT infection and appearance of sf-Hsp60 can promote an autoimmune aggression towards stressed cells and the development of diseases such as autoimmune arthritis, multiple sclerosis, atherosclerosis, vasculitis, diabetes, and thyroiditis, among others. At the same time, immunocomplexes composed of anti-CT-Hsp60 antibodies and circulating Hsp60 (both CT and human) may form deposits in several anatomical locations, e.g., at the glomerular basal membrane. The opposite side of the coin is that pre-tumor and tumor cells with sf-Hsp60 can be destroyed with participation of the anti-Hsp60 antibody, thus stopping cancer progression before it is even noticed by the patient or physician

    Acapsular Pasteurella multocida B:2 Can Stimulate Protective Immunity against Pasteurellosis

    No full text
    We have previously shown that a Pasteurella multocida cexA mutant (PBA875) was impaired in capsule export and highly attenuated in virulence for mice (J. D. Boyce and B. Adler, Infect. Immun. 68:3463–3468, 2000). In this study we show that immunization with high, but not low, doses of PBA875 can confer significant protection against wild-type challenge. We have also constructed a genetically defined acapsular P. multocida strain (AL18) by inactivation of bcbH, a gene predicted to be involved in polysaccharide biosynthesis. AL18 failed to produce immunoreactive polysaccharide as determined by immunofluorescence and Western immunoblot. Immunization of mice with live AL18 conferred significant protection against wild-type challenge, while immunization with similar doses of either killed wild-type or killed AL18 failed to confer protection

    Pasteurella multocida Gene Expression in Response to Iron Limitation

    No full text
    Pasteurella multocida is the causative agent of a wide range of diseases in avian and mammalian hosts. Gene expression in response to low iron conditions was analyzed in P. multocida using whole-genome microarrays. The analysis shows that the expression of genes involved in energy metabolism and electron transport generally decreased 2.1- to 6-fold while that of genes used for iron binding and transport increased 2.1- to 7.7-fold in P. multocida during the first 2 h of growth under iron-limiting conditions compared with controls. Notably, 27% of the genes with significantly altered expression had no known function, illustrating the limitations of using publicly available databases to identify genes involved in microbial metabolism and pathogenesis. Taken together, the results of our investigations demonstrate the utility of whole-genome microarray analyses for the identification of genes with altered expression profiles during varying growth conditions and provide a framework for the detailed analysis of the molecular mechanisms of iron acquisition and metabolism in P. multocida and other gram-negative bacteria
    corecore