74 research outputs found

    Synaptic Reorganization in the Adult Rat's Ventral Cochlear Nucleus following Its Total Sensory Deafferentation

    Get PDF
    Ablation of a cochlea causes total sensory deafferentation of the cochlear nucleus in the brainstem, providing a model to investigate nervous degeneration and formation of new synaptic contacts in the adult brain. In a quantitative electron microscopical study on the plasticity of the central auditory system of the Wistar rat, we first determined what fraction of the total number of synaptic contact zones (SCZs) in the anteroventral cochlear nucleus (AVCN) is attributable to primary sensory innervation and how many synapses remain after total unilateral cochlear ablation. Second, we attempted to identify the potential for a deafferentation-dependent synaptogenesis. SCZs were ultrastructurally identified before and after deafferentation in tissue treated for ethanolic phosphotungstic acid (EPTA) staining. This was combined with pre-embedding immunocytochemistry for gephyrin identifying inhibitory SCZs, the growth-associated protein GAP-43, glutamate, and choline acetyltransferase. A stereological analysis of EPTA stained sections revealed 1.11±0.09 (S.E.M.)×109 SCZs per mm3 of AVCN tissue. Within 7 days of deafferentation, this number was down by 46%. Excitatory and inhibitory synapses were differentially affected on the side of deafferentation. Excitatory synapses were quickly reduced and then began to increase in number again, necessarily being complemented from sources other than cochlear neurons, while inhibitory synapses were reduced more slowly and continuously. The result was a transient rise of the relative fraction of inhibitory synapses with a decline below original levels thereafter. Synaptogenesis was inferred by the emergence of morphologically immature SCZs that were consistently associated with GAP-43 immunoreactivity. SCZs of this type were estimated to make up a fraction of close to 30% of the total synaptic population present by ten weeks after sensory deafferentation. In conclusion, there appears to be a substantial potential for network reorganization and synaptogenesis in the auditory brainstem after loss of hearing, even in the adult brain

    The specific architecture of the anterior stroma accounts for maintenance of corneal curvature

    No full text
    AIM—To analyse the human corneal stroma in extreme hydration to discover if its structure is responsible for corneal stability.
METHODS—Corneas in several hydration states were used: postmortem control corneas (PM; n=3), corneas left for 1 day in phosphate buffered saline (PBS; n=4), and corneas left for 1 day (n=4), 2 days (n=4), 3 days (n=2), and 4 days (n=4) in deionised water. All corneas were fixed under standardised conditions and processed for light and electron microscopy. In addition, two fresh corneas from the operating theatre were studied which were processed 6 months after storage in sodium cacodylate buffer.
RESULTS—After 1 day in deionised water maximal stromal swelling was reached which did not change up to 4 days. The stroma of deionised water corneas (1400 µm) was much thicker than that of PBS corneas (650 µm) and PM corneas (450 µm). Deionised water treatment led to disappearance of all keratocytes leaving only remnants of nuclei and large interlamellar spaces. In these specimens the distance between the collagen fibres had increased significantly, but the diameter of the collagen fibres did not seem to be affected. A remarkable observation was that the most anterior part of the stroma (100-120 µm) in all deionised water specimens and those stored for 6 months in buffer was not swollen, indicating that the tightly interwoven anterior lamellae are resistant to extreme non-physiological hydration states.
CONCLUSIONS—The rigidity of the most anterior part of the corneal stroma in extreme hydration states points to an important role in maintenance of corneal curvature. Since a large part of this rigid anterior part of the stroma is either removed (PRK) or intersected (LASIK), it is possible that in the long run patients who underwent refractive surgery may be confronted with optical problems.


    Increased expression of endothelial antigen PAL-E in human diabetic retinopathy correlates with microvascular leakage

    No full text
    AIMS/HYPOTHESIS: The Pathologische Anatomie Leiden-Endothelium (PAL-E) antigen is a marker for loss of the blood-brain barrier function in brain tumours. It is endothelium specific and is associated with the endothelial plasmalemmal vesicles (caveolae) involved in transcellular transport. To test whether blood-retinal barrier loss in diabetic retinopathy is associated with cellular changes in the endothelium, the expression of antigen PAL-E in relation to microvascular leakage in human diabetic retinopathy was investigated. METHODS: Immunohistochemical staining of frozen tissue sections of postmortem eyes obtained from 30 persons without and 41 persons with diabetes mellitus was carried out with monoclonal antibodies against PAL-E and CD31 and with antibodies against endogenous fibrinogen, albumin and IgG as indicators of vascular leakage. RESULTS: Patchy or uniform microvascular PAL-E staining was observed in the retina of 17 of the 41 eyes of diabetic patients and in 2 of the 30 normal control eyes. In the diabetic eyes, PAL-E staining co-localized with microvascular staining for endogenous fibrinogen, albumin and IgG. Strong staining for PAL-E was observed in sites without blood-tissue barriers, like the choroid. CONCLUSIONS/INTERPRETATION: In microvessels with an intact blood-retina barrier the endothelial antigen PAL-E is absent. Its expression is increased in retinal vessels of patients with diabetic retinopathy and correlates with microvascular leakage of plasma proteins. This phenotypic shift involving an antigen associated with caveolae suggests that dysfunction of the endothelium forms the cellular basis for microvascular leakage in diabetic retinopathy, rather than passive endothelial damag

    Role of VEGF-A in endothelial phenotypic shift in human diabetic retinopathy and VEGF-A-induced retinopathy in monkeys

    No full text
    The endothelium-specific antigen PAL-E, associated with transport vesicles in non-barrier endothelium, is almost absent from barrier capillaries in the normal brain and retina. We have recently demonstrated that only leaking retinal capillaries in diabetic retinopathy (DR) in humans characteristically express PAL-E. Here we investigated the relation between the expression of the PAL-E antigen and vascular endothelial growth factor-A (VEGF) in human post-mortem eyes of individuals with diabetes mellitus (DM) and in experimental VEGF-induced retinopathy in cynomolgus monkeys. Cryosections were cut of eyes of 41 individuals with and 30 individuals without DM and eyes of 2 cynomolgus monkeys who received 4 injections of 0.5 microg VEGF in the vitreous of one eye and PBS in the other. The sections were stained with antibodies against VEGF, PAL-E and endogenous markers for microvascular leakage. Specific retinal vascular staining for VEGF was only observed in 10 out of the 41 cases with DM. These 10 cases also had marked uniform PAL-E staining and widespread vascular leakage. In contrast, diabetic patients without microvascular leakage and controls were negative for VEGF and PAL-E. Likewise, PAL-E was found only in the leaky retinal vessels of monkey eyes injected with VEGF. These results indicate that increased expression of the PAL-E antigen in retinal endothelium in conditions with microvascular leakage is related to VEGF and suggest that VEGF directly or indirectly induces PAL-E. PAL-E expression may reflect important endothelial changes involved in the disturbance of the blood-retina barrier in D

    Square arrays in early cortical lens opacities

    No full text
    A combined freeze-fracture and scanning electron microscopic study of early opaque spots in the aging human lens showed the absence of gap junctions and the presence of square arrays in the membranes of disturbed fibers and neighboring unaffected fibers. Square arrays, with membrane particles of 6-7 nm, are considered as rearranged gap junctions and/or intramembranous particles, with particle sizes between 8.5-9.5 nm; they are a sign of electric and metabolic uncoupling. These ultrastructural observations lend support to the idea of an uncoupling mechanism in the aging human lens, conserving the transparency of unaffected parts of the lens, as postulated previously

    Development and adult morphology of the eye lens in the zebrafish

    No full text
    The zebrafish has become an important vertebrate model organism to study the development of the visual system. Mutagenesis projects have resulted in the identification of hundreds of eye mutants. Analysis of the phenotypes of these mutants relies on in depth knowledge of the embryogenesis in wild-type animals. While the morphological events leading to the formation of the retina and its connections to the central nervous system have been described in great detail, the characterization of the development of the eye lens is still incomplete. In the present study, we provide a morphological description of embryonic and larval lens development as well as adult lens morphology in the zebrafish. Our analyses show that, in contrast to other vertebrate species, the zebrafish lens delaminates from the surface ectoderm as a solid cluster of cells. Detachment of the prospective lens from the surface ectoderm is facilitated by apoptosis. Primary fibre cell elongation occurs in a circular fashion resulting in an embryonic lens nucleus with concentric shells of fibres. After formation of a monolayer of lens epithelial cells, differentiation and elongation of secondary lens fibres result in a final lens morphology similar to that of other vertebrate species. As in other vertebrates, secondary fibre cell differentiation includes the programmed degradation of nuclei, the interconnection of adjacent fibres via protrusions at the fibre cells' edges and the establishment of gap junctions between lens fibre cells. The very close spacing of the nuclei of the differentiating secondary fibres in a narrow zone close to the equatorial epithelium, however, suggests that secondary fibre cell differentiation deviates from that described for mammalian or avian lenses. In summary, while there are similarities in the development and final morphology of the zebrafish lens with mammalian and avian lenses, there are also significant differences, suggesting caution when extrapolating findings on the zebrafish to, for example, human lens development or function
    • …
    corecore