2,201 research outputs found
Nonlinear photocurrents in two-dimensional systems based on graphene and boron nitride
DC photoelectrical currents can be generated purely as a non-linear effect in
uniform media lacking inversion symmetry without the need for a material
junction or bias voltages to drive it, in what is termed photogalvanic effect.
These currents are strongly dependent on the polarization state of the
radiation, as well as on topological properties of the underlying Fermi surface
such as its Berry curvature. In order to study the intrinsic photogalvanic
response of gapped graphene (GG), biased bilayer graphene (BBG), and hexagonal
boron nitride (hBN), we compute the non-linear current using a perturbative
expansion of the density matrix. This allows a microscopic description of the
quadratic response to an electromagnetic field in these materials, which we
analyze as a function of temperature and electron density. We find that the
intrinsic response is robust across these systems and allows for currents in
the range of pA cm/W to nA cm/W. At the independent-particle level, the
response of hBN-based structures is significant only in the ultra-violet due to
their sizeable band-gap. However, when Coulomb interactions are accounted for
by explicit solution of the Bethe-Salpeter equation, we find that the
photoconductivity is strongly modified by transitions involving exciton levels
in the gap region, whose spectral weight dominates in the overall frequency
range. Biased bilayers and gapped monolayers of graphene have a strong
photoconductivity in the visible and infrared window, allowing for photocurrent
densities of several nA cm/W. We further show that the richer electronic
dispersion of BBG at low energies and the ability to change its band-gap on
demand allows a higher tunability of the photocurrent, including not only its
magnitude but also, and significantly, its polarity.Comment: Updating with published version and respective references; 14 pages,
11 figure
Boron and nitrogen doping in graphene antidot lattices
Bottom-up fabrication of graphene antidot lattices (GALs) has previously
yielded atomically precise structures with sub-nanometer periodicity. Focusing
on this type of experimentally realized GAL, we perform density functional
theory calculations on the pristine structure as well as GALs with edge carbon
atoms substituted with boron or nitrogen. We show that p- and n-type doping
levels emerge with activation energies that depend on the level of
hydrogenation at the impurity. Furthermore, a tight-binding parameterization
together with a Green's function method are used to describe more dilute
doping.Comment: 8 pages, 7 figure
Gravitational instabilities of superspinars
Superspinars are ultracompact objects whose mass M and angular momentum J
violate the Kerr bound (cJ/GM^2>1). Recent studies analyzed the observable
consequences of gravitational lensing and accretion around superspinars in
astrophysical scenarios. In this paper we investigate the dynamical stability
of superspinars to gravitational perturbations, considering either purely
reflecting or perfectly absorbing boundary conditions at the "surface" of the
superspinar. We find that these objects are unstable independently of the
boundary conditions, and that the instability is strongest for relatively small
values of the spin. Also, we give a physical interpretation of the various
instabilities that we find. Our results (together with the well-known fact that
accretion tends to spin superspinars down) imply that superspinars are very
unlikely astrophysical alternatives to black holes.Comment: 15 pages, 9 figures, 1 table. v2: Fig. 8 and Section I improved. v3:
minor changes to match the published versio
Acceptance of fluorescence detectors and its implication in energy spectrum inference at the highest energies
Along the years HiRes and AGASA experiments have explored the fluorescence
and the ground array experimental techniques to measure extensive air showers,
being both essential to investigate the ultra-high energy cosmic rays. However,
such Collaborations have published contradictory energy spectra for energies
above the GZK cut-off. In this article, we investigate the acceptance of
fluorescence telescopes to different primary particles at the highest energies.
Using CORSIKA and CONEX shower simulations without and with the new
pre-showering scheme, which allows photons to interact in the Earth magnetic
field, we estimate the aperture of the HiRes-I telescope for gammas, iron
nuclei and protons primaries as a function of the number of simulated events
and primary energy. We also investigate the possibility that systematic
differences in shower development for hadrons and gammas could mask or distort
vital features of the cosmic ray energy spectrum at energies above the
photo-pion production threshold. The impact of these effects on the true
acceptance of a fluorescence detector is analyzed in the context of top-down
production models
- …