12,516 research outputs found

    Modelling Planck-scale Lorentz violation via analogue models

    Full text link
    Astrophysical tests of Planck-suppressed Lorentz violations had been extensively studied in recent years and very stringent constraints have been obtained within the framework of effective field theory. There are however still some unresolved theoretical issues, in particular regarding the so called "naturalness problem" - which arises when postulating that Planck-suppressed Lorentz violations arise only from operators with mass dimension greater than four in the Lagrangian. In the work presented here we shall try to address this problem by looking at a condensed-matter analogue of the Lorentz violations considered in quantum gravity phenomenology. Specifically, we investigate the class of two-component BECs subject to laser-induced transitions between the two components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. We shall show that such a model can be considered to be an explicit example high-energy Lorentz violations where the ``naturalness problem'' does not arise.Comment: Talk given at the Fourth Meeting on Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone (Sardinia, Italy) September 12-16, 200

    Conformational Transitions Accompanying Oligomerization of Yeast Alcohol Oxidase, a Peroxisomal Flavoenzyme

    Get PDF
    Alcohol oxidase (AO) is a homo-octameric flavoenzyme which catalyzes methanol oxidation in methylotrophic yeasts. AO protein is synthesized in the cytosol and subsequently sorted to peroxisomes where the active enzyme is formed. To gain further insight in the molecular mechanisms involved in AO activation, we studied spectroscopically native AO from Hansenula polymorpha and Pichia pastoris and three putative assembly intermediates. Fluorescence studies revealed that both Trp and FAD are suitable intramolecular markers of the conformation and oligomeric state of AO. A direct relationship between dissociation of AO octamers and increase in Trp fluorescence quantum yield and average fluorescence lifetime was found. The time-resolved fluorescence of the FAD cofactor showed a rapid decay component which reflects dynamic quenching due to the presence of aromatic amino acids in the FAD-binding pocket. The analysis of FAD fluorescence lifetime profiles showed a remarkable resemblance of pattern for purified AO and AO present in intact yeast cells. Native AO contains a high content of ordered secondary structure which was reduced upon FAD-removal. Dissociation of octamers into monomers resulted in a conversion of β-sheets into α-helices. Our results are explained in relation to a 3D model of AO, which was built based on the crystallographic data of the homologous enzyme glucose oxidase from Aspergillus niger. The implications of our results for the current model of the in vivo AO assembly pathway are discussed.

    An Internet Portal based on 'Twenty Questions'

    Get PDF
    An efficient Internet portal should contain a search engine or maybe even a decision support system to supply the user with the information (s)he may be looking for. In this report an intelligent agent is suggested that relates different sites to each other, based on the answers supplied by the users looking for certain information. For this purpose a self-learning system has been made, based on the neural network of the game Twenty Questions, but with a strategy that relates different objects or sites by correlating the list of answers to the questions

    Mechanisms promoting higher growth rate in arctic than in temperate shorebirds

    Get PDF
    We compared prefledging growth, energy expenditure, and time budgets in the arctic-breeding red knot (Calidris canutus) to those in temperate shorebirds, to investigate how arctic chicks achieve a high growth rate despite energetic difficulties associated with precocial development in a cold climate. Growth rate of knot chicks was very high compared to other, mainly temperate, shorebirds of their size, but strongly correlated with weather-induced and seasonal variation in availability of invertebrate prey. Red knot chicks sought less parental brooding and foraged more at the same mass and temperature than chicks of three temperate shorebird species studied in The Netherlands. Fast growth and high muscular activity in the cold tundra environment led to high energy expenditure, as measured using doubly labelled water: total metabolised energy over the 18-day prefledging period was 89% above an allometric prediction, and among the highest values reported for birds. A comparative simulation model based on our observations and data for temperate shorebird chicks showed that several factors combine to enable red knots to meet these high energy requirements: (1) the greater cold-hardiness of red knot chicks increases time available for foraging; (2) their fast growth further shortens the period in which chicks depend on brooding; and (3) the 24-h daylight increases potential foraging time, though knots apparently did not make full use of this. These mechanisms buffer the loss of foraging time due to increased need for brooding at arctic temperatures, but not enough to satisfy the high energy requirements without invoking (4) a higher foraging intake rate as an explanation. Since surface-active arthropods were not more abundant in our arctic study site than in a temperate grassland, this may be due to easier detection or capture of prey in the tundra. The model also suggested that the cold-hardiness of red knot chicks is critical in allowing them sufficient feeding time during the first week of life. Chicks hatched just after the peak of prey abundance in mid-July, but their food requirements were maximal at older ages, when arthropods were already declining. Snow cover early in the season prevented a better temporal match between chick energy requirements and food availability, and this may enforce selection for rapid growth.

    Cylindrical thin-shell wormholes and energy conditions

    Full text link
    We prove the impossibility of cylindrical thin-shell wormholes supported by matter satisfying the energy conditions everywhere, under reasonable assumptions about the asymptotic behaviour of the - in general different - metrics at each side of the throat. In particular, we reproduce for singular sources previous results corresponding to flat and conical asymptotics, and extend them to a more general asymptotic behaviour. Besides, we establish necessary conditions for the possibility of non exotic cylindrical thin-shell wormholes.Comment: 9 pages; slightly improved version of the article accepted in Int. J. Mod. Phys.

    Stability of thin-shell wormholes supported by ordinary matter in Einstein-Maxwell-Gauss-Bonnet gravity

    Full text link
    Recently in (Phys. Rev. D 76, 087502 (2007) and Phys. Rev. D 77, 089903(E) (2008)) a thin-shell wormhole has been introduced in 5-dimensional Einstein-Maxwell-Gauss-Bonnet (EMGB) gravity which was supported by normal matter. We wish to consider this solution and investigate its stability. Our analysis shows that for the Gauss-Bonnet (GB) parameter α<0,\alpha <0, stability regions form for a narrow band of finely-tuned mass and charge. For the case α>0\alpha >0, we iterate once more that no stable, normal matter thin-shell wormhole exists.Comment: 11 pages, 4 figure

    Energy conditions in f(R) gravity and Brans-Dicke theories

    Full text link
    The equivalence between f(R) gravity and scalar-tensor theories is invoked to study the null, strong, weak and dominant energy conditions in Brans-Dicke theory. We consider the validity of the energy conditions in Brans-Dicke theory by invoking the energy conditions derived from a generic f(R) theory. The parameters involved are shown to be consistent with an accelerated expanding universe.Comment: 9 pages, 1 figure, to appear in IJMP

    Enhancement of superconductivity near the ferromagnetic quantum critical point in UCoGe

    Get PDF
    We report a high-pressure single crystal study of the superconducting ferromagnet UCoGe. Ac-susceptibility and resistivity measurements under pressures up to 2.2 GPa show ferromagnetism is smoothly depressed and vanishes at a critical pressure pc=1.4p_c = 1.4 GPa. Near the ferromagnetic critical point superconductivity is enhanced. Upper-critical field measurements under pressure show Bc2(0)B_{c2}(0) attains remarkably large values, which provides solid evidence for spin-triplet superconductivity over the whole pressure range. The obtained pTp-T phase diagram reveals superconductivity is closely connected to a ferromagnetic quantum critical point hidden under the superconducting `dome'.Comment: 4 pages, 3 figures; accepted for publication in PR

    From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture

    Get PDF
    The recent interest in ``time machines'' has been largely fueled by the apparent ease with which such systems may be formed in general relativity, given relatively benign initial conditions such as the existence of traversable wormholes or of infinite cosmic strings. This rather disturbing state of affairs has led Hawking to formulate his Chronology Protection Conjecture, whereby the formation of ``time machines'' is forbidden. This paper will use several simple examples to argue that the universe appears to exhibit a ``defense in depth'' strategy in this regard. For appropriate parameter regimes Casimir effects, wormhole disruption effects, and gravitational back reaction effects all contribute to the fight against time travel. Particular attention is paid to the role of the quantum gravity cutoff. For the class of model problems considered it is shown that the gravitational back reaction becomes large before the Planck scale quantum gravity cutoff is reached, thus supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision
    corecore