122 research outputs found

    Aging and response properties in the parking-lot model

    Full text link
    An adsorption-desorption (or parking-lot) model can reproduce qualitatively the densification kinetics and other features of a weakly vibrated granular material. Here we study the the two-time correlation and response functions of the model and demonstrate that their behavior is consistent with recently observed memory effects in granular materials. Although the densification kinetics and hysteresis are robust properties, we show that the aging behavior of the adsorption-desorption model is different from other models of granular compaction. We propose an experimental test to distinguish the possible aging behaviors.Comment: 9 pages, 7 figures, to appear in Eur. Phys. Jour.

    Optimizing the Throughput of Particulate Streams Subject to Blocking

    Get PDF
    Filtration, flow in narrow channels and traffic flow are examples of processes subject to blocking when the channel conveying the particles becomes too crowded. If the blockage is temporary, which means that after a finite time the channel is flushed and reopened, one expects to observe a maximum throughput for a finite intensity of entering particles. We investigate this phenomenon by introducing a queueing theory inspired, circular Markov model. Particles enter a channel with intensity λ\lambda and exit at a rate μ\mu. If NN particles are present at the same time in the channel, the system becomes blocked and no more particles can enter until the blockage is cleared after an exponentially distributed time with rate μ∗\mu^*. We obtain an exact expression for the steady state throughput (including the exiting blocked particles) for all values of NN. For N=2N=2 we show that the throughput assumes a maximum value for finite λ\lambda if μ∗/μ<1/4\mu^*/\mu < 1/4. The time-dependent throughput either monotonically approaches the steady state value, or reaches a maximum value at finite time. We demonstrate that, in the steady state, this model can be mapped to a previously introduced non-Markovian model with fixed transit and blockage times. We also examine an irreversible, non-Markovian blockage process with constant transit time exposed to an entering flux of fixed intensity for a finite time and we show that the first and second moments of the number of exiting particles are maximized for a finite intensity.Comment: 20 pages, 13 figure

    From Car Parking to Protein Adsorption: An Overview of Sequential Adsorption Processes

    Full text link
    The adsorption or adhesion of large particles (proteins, colloids, cells, >...) at the liquid-solid interface plays an important role in many diverse applications. Despite the apparent complexity of the process, two features are particularly important: 1) the adsorption is often irreversible on experimental time scales and 2) the adsorption rate is limited by geometric blockage from previously adsorbed particles. A coarse-grained description that encompasses these two properties is provided by sequential adsorption models whose simplest example is the random sequential adsorption (RSA) process. In this article, we review the theoretical formalism and tools that allow the systematic study of kinetic and structural aspects of these sequential adsorption models. We also show how the reference RSA model may be generalized to account for a variety of experimental features including particle anisotropy, polydispersity, bulk diffusive transport, gravitational effects, surface-induced conformational and orientational change, desorption, and multilayer formation. In all cases, the significant theoretical results are presented and their accuracy (compared to computer simulation) and applicability (compared to experiment) are discussed.Comment: 51 pages, 18 Figures, to appear in a special volume entitled "Adhesion of Submicron Particles on Solid Surfaces" of Colloids and Surfaces A, guest-edited by V. Privman.to appear in a special volume entitle

    Microphase Separation and modulated phases in a Coulomb frustrated Ising ferromagnet

    Full text link
    We study a 3-dimensional Ising model in which the tendency to order due to short-range ferromagnetic interactions is frustrated by competing long-range (Coulombic) interactions. Complete ferromagnetic ordering is impossible for any nonzero value of the frustration parameter, but the system displays a variety of phases characterized by periodically modulated structures. We have performed extensive Monte-Carlo simulations which provide strong evidence that the microphase separation transition between paramagnetic and modulated phases is a fluctuation-induced first-order transition. Additional transitions to various commensurate phases may also occur when further lowering the temperature.Comment: 6 pages, 4 figures, accepted in Europhys. Letter

    The viscous slowing down of supercooled liquids as a temperature-controlled superArrhenius activated process: a description in terms of frustration-limited domains

    Full text link
    We propose that the salient feature to be explained about the glass transition of supercooled liquids is the temperature-controlled superArrhenius activated nature of the viscous slowing down, more strikingly seen in weakly-bonded, fragile systems. In the light of this observation, the relevance of simple models of spherically interacting particles and that of models based on free-volume congested dynamics are questioned. Finally, we discuss how the main aspects of the phenomenology of supercooled liquids, including the crossover from Arrhenius to superArrhenius activated behavior and the heterogeneous character of the α\alpha relaxation, can be described by an approach based on frustration-limited domains.Comment: 13 pages, 4 figures, accepted in J. Phys.: Condensed Matter, proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics

    Angular velocity distribution of a granular planar rotator in a thermalized bath

    Full text link
    The kinetics of a granular planar rotator with a fixed center undergoing inelastic collisions with bath particles is analyzed both numerically and analytically by means of the Boltzmann equation. The angular velocity distribution evolves from quasi-gaussian in the Brownian limit to an algebraic decay in the limit of an infinitely light particle. In addition, we compare this model with a planar rotator with a free center. We propose experimental tests that might confirm the predicted behaviors.Comment: 10 Pages, 9 Figure

    Application of the Gillespie algorithm to a granular intruder particle

    Full text link
    We show how the Gillespie algorithm, originally developed to describe coupled chemical reactions, can be used to perform numerical simulations of a granular intruder particle colliding with thermalized bath particles. The algorithm generates a sequence of collision ``events'' separated by variable time intervals. As input, it requires the position-dependent flux of bath particles at each point on the surface of the intruder particle. We validate the method by applying it to a one-dimensional system for which the exact solution of the homogeneous Boltzmann equation is known and investigate the case where the bath particle velocity distribution has algebraic tails. We also present an application to a granular needle in bath of point particles where we demonstrate the presence of correlations between the translational and rotational degrees of freedom of the intruder particle. The relationship between the Gillespie algorithm and the commonly used Direct Simulation Monte Carlo (DSMC) method is also discussed.Comment: 13 pages, 8 figures, to be published in J. Phys. A Math. Ge
    • …
    corecore