55 research outputs found

    Distribution of Non-uniform Demagnetization Fields in Paramagnetic Bulk Solids

    Full text link
    A general calculation for the distribution of non-uniform demagnetization fields in paramagnetic bulk solids is described and the fields for various sample geometries are calculated. Cones, ellipsoids, paraboloids and hyperboloids with similar sample aspect ratios are considered. Significant differences in their demagnetization fields are observed. The calculation shows that the demagnetization field magnitudes decrease along the axis of symmetry (along zz) where an externally applied magnetic field is aligned, and increase in the vicinity of the lateral surfaces with the largest field values found in the cone and the narrowest field distributions found in the hyperboloid. Application is made to the theoretical modeling of the 1^{1}H-NMR spectra of a single crystal of field-induced superconductor λ\lambda-(BETS)2_{2}FeCl4_{4} with a rectangular sample geometry, providing a good fit to the measured NMR spectra. This calculation is also applicable to diamagnetic or ferromagnetic materials in general.Comment: 7 pages, 7 figures, submitted to Physical Review B (Corresponding author: [email protected]

    Crude Oil-Degradation and Plasmid Profile of Nitrifying Bacteria Isolated from Oil-Impacted Mangrove Sediment in the Niger Delta of Nigeria

    Get PDF
    The crude oil degradability and plasmid profile of autotrophic nitrifying bacteria, Nitrosomonas and Nitrobacter species, isolated from mangrove sediment in the Niger Delta of Nigeria were studied. The effects of temperature, pH and optical density on the utilization of different carbon sources by the bacteria were also investigated. Results showed that nitrifying bacteria could utilize kerosene, diesel oil, jet fuel and engine oil as carbon sources. None utilized hexane and xylene but moderate growth was observed in benzene, phenol and toluene. However, their ability to utilized crude oil varied both in rates of utilization and in growth profiles. Mixed culture of the isolates degrades 52 % of crude oil introduced into the medium followed by Nitrosomonas sp. with 40 % degradation. The least was Nitrobacter sp. with 20 % degradation. The ability of the autotrophs to degrade crude oil was found to be plasmid-mediated through curing experiment and electrophoresis. The size of the plasmid involved was estimated to be 23 kb. The high crude oil utilization of the mixed culture implies that nitrifying bacteria isolated from contaminated ecosystem are excellent crude oil degraders and can be harnessed for bioremediation purposes

    Monitoring of microbial hydrocarbon remediation in the soil

    Get PDF
    Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon-degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation, thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities, respectively. Provided the polluted soil has requisite values for environmental factors that influence microbial activities and there are no inhibitors of microbial metabolism, there is a good chance that there will be a viable and active population of hydrocarbon-utilizing microorganisms in the soil. Microbial methods for monitoring bioremediation of hydrocarbons include chemical, biochemical and microbiological molecular indices that measure rates of microbial activities to show that in the end the target goal of pollutant reduction to a safe and permissible level has been achieved. Enumeration and characterization of hydrocarbon degraders, use of micro titer plate-based most probable number technique, community level physiological profiling, phospholipid fatty acid analysis, 16S rRNA- and other nucleic acid-based molecular fingerprinting techniques, metagenomics, microarray analysis, respirometry and gas chromatography are some of the methods employed in bio-monitoring of hydrocarbon remediation as presented in this review

    Vibrational Spectrum of Bathorhodopsin in the Room-Temperature Rhodopsin Photoreaction

    No full text

    Vibrational spectrum of the lumi intermediate in the room temperature rhodopsin photo-reaction.

    Get PDF
    The vibrational spectrum (650-1750 cm(-1)) of the lumi-rhodopsin (lumi) intermediate formed in the microsecond time regime of the room-temperature rhodopsin (RhRT) photoreaction is measured for the first time using picosecond time-resolved coherent anti-Stokes Raman spectroscopy (PTR/CARS). The vibrational spectrum of lumi is recorded 2.5 micros after the 3-ps, 500-nm excitation of RhRT. Complementary to Fourier transform infrared spectra recorded at Rh sample temperatures low enough to freeze lumi, these PTR/CARS results provide the first detailed view of the vibrational degrees of freedom of room-temperature lumi (lumiRT) through the identification of 21 bands. The exceptionally low intensity (compared to those observed in bathoRT) of the hydrogen out-of-plane (HOOP) bands, the moderate intensity and absolute positions of C-C stretching bands, and the presence of high-intensity C==C stretching bands suggest that lumiRT contains an almost planar (nontwisting), all-trans retinal geometry. Independently, the 944-cm(-1) position of the most intense HOOP band implies that a resonance coupling exists between the out-of-plane retinal vibrations and at least one group among the amino acids comprising the retinal binding pocket. The formation of lumiRT, monitored via PTR/CARS spectra recorded on the nanosecond time scale, can be associated with the decay of the blue-shifted intermediate (BSI(RT)) formed in equilibrium with the bathoRT intermediate. PTR/CARS spectra measured at a 210-ns delay contain distinct vibrational features attributable to BSI(RT), which suggest that the all-trans retinal in both BSI(RT) and lumiRT is strongly coupled to part of the retinal binding pocket. With regard to the energy storage/transduction mechanism in RhRT, these results support the hypothesis that during the formation of lumiRT, the majority of the photon energy absorbed by RhRT transfers to the apoprotein opsin

    Femtosecond spectroscopic observations of initial intermediates in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila.

    Get PDF
    Femtosecond time-resolved absorbance measurements were used to probe the subpicosecond primary events of the photoactive yellow protein (PYP), a 14-kD soluble photoreceptor from Ectothiorhodospira halophila. Previous picosecond absorption studies from our laboratory have revealed the presence of two new early photochemical intermediates in the PYP photocycle, I(0), which appears in </=3 ps, and I(0)(double dagger), which is formed in 220 ps, as well as stimulated emission from the PYP excited state. In the present study, kinetic measurements at two excitation wavelengths (395 nm and 460 nm) on either side of the PYP absorption maximum (446 nm) were undertaken using 100-fs pump and probe pulses. Global analysis over a range of probe wavelengths yielded time constants of 1.9 ps for the photochemical formation of the I(0) intermediate via the PYP excited state, and 3.4 ps for the repopulation of the ground state from the excited state. In addition to these pathways, 395 nm excitation also initiated an alternative route for PYP excitation and photochemistry, presumably involving a different excited electronic state of the chromophore. No photochemical intermediates formed before I(0) were observed. Based on these data, a quantum yield of 0.5-0.6 for I(0) formation was determined. The structural and mechanistic aspects of these results are discussed
    corecore