45 research outputs found

    Cytokine Levels Correlate with Immune Cell Infiltration after Anti-VEGF Therapy in Preclinical Mouse Models of Breast Cancer

    Get PDF
    The effect of blocking VEGF activity in solid tumors extends beyond inhibition of angiogenesis. However, no studies have compared the effectiveness of mechanistically different anti-VEGF inhibitors with respect to changes in tumor growth and alterations in the tumor microenvironment. In this study we use three distinct breast cancer models, a MDA-MB-231 xenograft model, a 4T1 syngenic model, and a transgenic model using MMTV-PyMT mice, to explore the effects of various anti-VEGF therapies on tumor vasculature, immune cell infiltration, and cytokine levels. Tumor vasculature and immune cell infiltration were evaluated using immunohistochemistry. Cytokine levels were evaluated using ELISA and electrochemiluminescence. We found that blocking the activation of VEGF receptor resulted in changes in intra-tumoral cytokine levels, specifically IL-1ÎČ, IL-6 and CXCL1. Modulation of the level these cytokines is important for controlling immune cell infiltration and ultimately tumor growth. Furthermore, we demonstrate that selective inhibition of VEGF binding to VEGFR2 with r84 is more effective at controlling tumor growth and inhibiting the infiltration of suppressive immune cells (MDSC, Treg, macrophages) while increasing the mature dendritic cell fraction than other anti-VEGF strategies. In addition, we found that changes in serum IL-1ÎČ and IL-6 levels correlated with response to therapy, identifying two possible biomarkers for assessing the effectiveness of anti-VEGF therapy in breast cancer patients

    PDZ domains and their binding partners: structure, specificity, and modification

    Get PDF
    PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes

    Recognition of lysine-rich peptide ligands by murine cortactin SH3 domain: CD, ITC and NMR studies

    No full text
    Cortactin is a ubiquitous actin-binding protein that regulates various aspects of cell dynamics and is implicated in the pathogenesis of human neoplasia. The sequence of cortactin contains a number of signaling motifs and an SH3 domain at the C-terminus, which mediates the interaction of the protein with several partners, including Shank2. A recombinant protein, comprising the murine cortactin SH3 domain fused to GST (GST-SH3m-cort), was prepared and used to assess the domain-binding affinity of potential peptide-ligands reproducing the proline-rich regions of human HPK1 and Shank2 proteins. The key residues involved in the SH3m-cort domain recognition were identified by three different approaches: non-immobilized ligand interaction assay by circular dichroism, isothermal titration calorimetry, and nuclear magnetic resonance. Our results show that the classical PxxPxK class II binding motif is not sufficient to mediate the interaction with GST-SH3m-cort, an event that depends on the presence of additional basic residues located at either the N- or the C-terminus of the PxxPxK motif. Especially effective in promoting the peptide binding is a Lys residue at the -5 position, a determinant present in both P2 (HPK1 394-403) and S1 (Shank2 1168-1189) peptides. GST-SH3m-cort exhibits the highest affinity toward peptide S1, which contains additional Lys residues at the -3, -5, and -7 positions, indicating that the optimal consensus motif may be KPPxPxKxKxK. These results are supported by the in silico models of SH3m-cort complexed with P2 or S1, which highlight the domain residues that interact with the recognition determinants of the peptide-ligand and cooperate in binding stabilization
    corecore