494 research outputs found

    Bose-Einstein Condensation in the Framework of κ\kappa-Statistics

    Full text link
    In the present work we study the main physical properties of a gas of κ\kappa-deformed bosons described through the statistical distribution function fκ=Z1[expκ(β(1/2mv2μ))1]1f_\kappa=Z^{-1}[\exp_\kappa (\beta({1/2}m v^2-\mu))-1]^{-1}. The deformed κ\kappa-exponential expκ(x)\exp_\kappa(x), recently proposed in Ref. [G.Kaniadakis, Physica A {\bf 296}, 405, (2001)], reduces to the standard exponential as the deformation parameter κ0\kappa \to 0, so that f0f_0 reproduces the Bose-Einstein distribution. The condensation temperature TcκT_c^\kappa of this gas decreases with increasing κ\kappa value, and approaches the 4He(I)4He(II)^{4}He(I)-^{4}He(II) transition temperature Tλ=2.17KT_{\lambda}=2.17K, improving the result obtained in the standard case (κ=0\kappa=0). The heat capacity CVκ(T)C_V^\kappa(T) is a continuous function and behaves as BκT3/2B_\kappa T^{3/2} for TTcκTT_c^\kappa, in contrast with the standard case κ=0\kappa=0, it is always increasing. Pacs: 05.30.Jp, 05.70.-a Keywords: Generalized entropy; Boson gas; Phase transition.Comment: To appear in Physica B. Two fig.p

    Tumour cell thrombospondin-1 regulates tumour cell adhesion and invasion through the urokinase plasminogen activator receptor

    Get PDF
    We have previously shown that platelet-produced thrombospondin-1 up-regulates the urokinase plasminogen activator and its receptor and promotes tumour cell invasion. Although tumour cells produce thrombospondin-1 in vivo, they produce only minimal amounts of thrombospondin-1 in vitro. To determine the effect of tumour cell-produced thrombospondin-1 in the regulation of the plasminogen/plasmin system and tumour cell invasion, we studied THBS-1 -transfected MDA-MB-435 breast cancer cells that overexpress thrombospondin-1. The role of urokinase plasminogen receptor in thrombospondin-1-mediated adhesion and invasion was studied by antisense inhibition, enzymatic cleavage and antibody neutralization. Tumour cell adhesion to collagen and laminin was evaluated. Tumour cell invasion was studied in a modified Boyden chamber collagen invasion assay. Tumour cell thrombospondin-1 induced a 2–7 fold increase in urokinase plasminogen activator receptor and cell-associated urokinase plasminogen activator expression and a 50–65% increase in cell-associated urokinase plasminogen activator and plasmin activities. Furthermore, tumour cell thrombospondin-1 promoted tumour cell invasion and decreased tumour cell adhesion through up-regulation of urokinase plasminogen activator receptor-controlled urokinase plasminogen activator and plasmin activities. We conclude that tumour cell-produced thrombospondin-1 may play a critical role in the regulation of tumour cell adhesion and tumour cell invasion. © 2000 Cancer Research Campaig

    Temporary Trans-gastric Stent Deployment Over a 20 French Gastrostomy for Single-Stage Endoscopic Retrograde Cholangiopancreatography After Gastric Bypass

    Get PDF
    Introduction: Treatment of pancreato-biliary disorders after gastric bypass is challenging due to altered anatomy. Several techniques have been proposed to overcome this condition; however, none has emerged as the gold standard treatment. Furthermore, a decision-making algorithm evaluating when and why apply one technique over another is still lacking. Objectives: To describe a novel trans-gastric approach to allow endoscopic retrograde cholangiopancreatography (ERCP) in Roux-en-Y gastric bypass (RYGB) anatomy soon after prior laparoscopic cholecystectomy (LC) and to propose a decision-making algorithm for selection of the most suitable technique according a tailored approach. Setting: Private hospital. Methods: Between January and March 2020, patients with Roux-en-Y gastric bypass anatomy referred to our tertiary center to undergo ERCP after recent laparoscopic cholecystectomy were retrospectively evaluated. A 20 french (Fr) gastrostomy was performed during cholecystectomy. A single-stage ERCP was carried out by means of temporary trans-gastric stent deployment over a 20 Fr gastrostomy. Results: A total of 5 patients (mean age 41; mean body mass index 48.3) were enrolled. ERCP was performed after an average of 2 days from surgery. Technical and clinical success was achieved in 100%. No adverse events occurred. Spontaneous closure of the gastrostomy after its bedside removal was observed in all cases. Conclusions: Our approach allows to perform a single-stage ERCP in RYGB patients, early after LC, with no need of any other re-interventions. Any surgeon facing unexpected biliary disorders, during LC, can easily perform a 20 Fr gastrostomy thus allowing the patient to undergo early ERCP without any delay

    The role of structural polymorphism in driving the mechanical performance of the alzheimer's beta amyloid fibrils

    Get PDF
    Alzheimer's Disease (AD) is related with the abnormal aggregation of amyloid β-peptides Aβ1-40 and Aβ1-42, the latter having a polymorphic character which gives rise to U- or S-shaped fibrils. Elucidating the role played by the nanoscale-material architecture on the amyloid fibril stability is a crucial breakthrough to better understand the pathological nature of amyloid structures and to support the rational design of bio-inspired materials. The computational study here presented highlights the superior mechanical behavior of the S-architecture, characterized by a Young's modulus markedly higher than the U-shaped architecture. The S-architecture showed a higher mechanical resistance to the enforced deformation along the fibril axis, consequence of a better interchain hydrogen bonds' distribution. In conclusion, this study, focusing the attention on the pivotal multiscale relationship between molecular phenomena and material properties, suggests the S-shaped Aβ1-42 species as a target of election in computational screen/design/optimization of effective aggregation modulators

    Modeling transcription factor binding events to DNA using a random walker/jumper representation on a 1D/2D lattice with different affinity sites

    Full text link
    Surviving in a diverse environment requires corresponding organism responses. At the cellular level, such adjustment relies on the transcription factors (TFs) which must rapidly find their target sequences amidst a vast amount of non-relevant sequences on DNA molecules. Whether these transcription factors locate their target sites through a 1D or 3D pathway is still a matter of speculation. It has been suggested that the optimum search time is when the protein equally shares its search time between 1D and 3D diffusions. In this paper, we study the above problem using a Monte Carlo simulation by considering a very simple physical model. A 1D strip, representing a DNA, with a number of low affinity sites, corresponding to non-target sites, and high affinity sites, corresponding to target sites, is considered and later extended to a 2D strip. We study the 1D and 3D exploration pathways, and combinations of the two modes by considering three different types of molecules: a walker that randomly walks along the strip with no dissociation; a jumper that represents dissociation and then re-association of a TF with the strip at later time at a distant site; and a hopper that is similar to the jumper but it dissociates and then re-associates at a faster rate than the jumper. We analyze the final probability distribution of molecules for each case and find that TFs can locate their targets fast enough even if they spend 15% of their search time diffusing freely in the solution. This indeed agrees with recent experimental results obtained by Elf et al. 2007 and is in contrast with theoretical expectation.Comment: 24 pages, 9 figure

    In silico Investigations of the Mode of Action of Novel Colchicine Derivatives Targeting β-Tubulin Isotypes: A Search for a Selective and Specific β-III Tubulin Ligand

    Get PDF
    The cardinal role of microtubules in cell mitosis makes them interesting drug targets for many pharmacological treatments, including those against cancer. Moreover, different expression patterns between cell types for several tubulin isotypes represent a great opportunity to improve the selectivity and specificity of the employed drugs and to design novel compounds with higher activity only on cells of interest. In this context, tubulin isotype βIII represents an excellent target for anti-tumoral therapies since it is overexpressed in most cancer cells and correlated with drug resistance. Colchicine is a well-known antimitotic agent, which is able to bind the tubulin dimer and to halt the mitotic process. However, it shows high toxicity also on normal cells and it is not specific for isotype βIII. In this context, the search for colchicine derivatives is a matter of great importance in cancer research. In this study, homology modeling techniques, molecular docking, and molecular dynamics simulations have been employed to characterize the interaction between 55 new promising colchicine derivatives and tubulin isotype βIII. These compounds were screened and ranked based on their binding affinity and conformational stability in the colchicine binding site of tubulin βIII. Results from this study point the attention on an amide of 4-chlorine thiocolchicine. This colchicine-derivative is characterized by a unique mode of interaction with tubulin, compared to all other compounds considered, which is primarily characterized by the involvement of the α-T5 loop, a key player in the colchicine binding site. Information provided by the present study may be particularly important in the rational design of colchicine-derivatives targeting drug resistant cancer phenotypes

    Structure based modeling of small molecules binding to the TLR7 by atomistic level simulations

    Get PDF
    Toll-Like Receptors (TLR) are a large family of proteins involved in the immune system response. Both the activation and the inhibition of these receptors can have positive effects on several diseases, including viral pathologies and cancer, therefore prompting the development of new compounds. In order to provide new indications for the design of Toll-Like Receptor 7 (TLR7)-targeting drugs, the mechanism of interaction between the TLR7 and two important classes of agonists (imidazoquinoline and adenine derivatives) was investigated through docking and Molecular Dynamics simulations. To perform the computational analysis, a new model for the dimeric form of the receptors was necessary and therefore created. Qualitative and quantitative differences between agonists and inactive compounds were determined. The in silico results were compared with previous experimental observations and employed to define the ligand binding mechanism of TLR7

    Leukemia Inhibitory Factor Augments Neurotrophin Expression and Corticospinal Axon Growth after Adult CNS Injury

    Get PDF
    The cytokine leukemia inhibitory factor (LIF) modulates glial and neuronal function in development and after peripheral nerve injury, but little is known regarding its role in the injured adult CNS. To further understand the biological role of LIF and its potential mechanisms of action after CNS injury, effects of cellularly delivered LIF on axonal growth, glial activation, and expression of trophic factors were examined after adult mammalian spinal cord injury. Fibroblasts genetically modified to produce high amounts of LIF were grafted to the injured spinal cords of adult Fischer 344 rats. Two weeks after injury, animals with LIF-secreting cells showed a specific and significant increase in corticospinal axon growth compared with control animals. Furthermore, expression of neurotrophin-3, but not nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor, or ciliary neurotrophic factor, was increased at the lesion site in LIF-grafted but not in control subjects. No differences in astroglial and microglial/macrophage activation were observed. Thus, LIF can directly or indirectly modulate molecular and cellular responses of the adult CNS to injury. These findings also demonstrate that neurotrophic molecules can augment expression of other trophic factors in vivo after traumatic injury in the adult CNS

    Linoleic acid: Is this the key that unlocks the quantum brain? Insights linking broken symmetries in molecular biology, mood disorders and personalistic emergentism

    Get PDF
    In this paper we present a mechanistic model that integrates subneuronal structures, namely ion channels, membrane fatty acids, lipid rafts, G proteins and the cytoskeleton in a dynamic system that is finely tuned in a healthy brain. We also argue that subtle changes in the composition of the membrane's fatty acids may lead to down-stream effects causing dysregulation of the membrane, cytoskeleton and their interface. Such exquisite sensitivity to minor changes is known to occur in physical systems undergoing phase transitions, the simplest and most studied of them is the so-called Ising model, which exhibits a phase transition at a finite temperature between an ordered and disordered state in 2- or 3-dimensional space. We propose this model in the context of neuronal dynamics and further hypothesize that it may involve quantum degrees of freedom dependent upon variation in membrane domains associated with ion channels or microtubules. Finally, we provide a link between these physical characteristics of the dynamical mechanism to psychiatric disorders such as major depression and antidepressant action
    corecore