2,700 research outputs found

    Reflection mode photoacoustic measurement of speed of sound

    Get PDF
    We present a method to determine the speed of sound in tissue using a double-ring photoacoustic sensor working in reflection mode. This method uses the cross-correlation between the laser-induced ultrasound waves detected by two concentric ring shaped sensors, while a priori information about the depth-position of the photoacoustic source is not required. We demonstrate the concept by estimating the speed of sound in water as a function of temperature. Comparison of the estimated speed with values reported in literature shows an average systematic error of 0.1% and a standard deviation of 0.1%. Furthermore, we demonstrate that the method can be applied to layered media. The method has application in the correction of photoacoustic and ultrasound images afflicted by local speed variations in tissue. Additionally, the concept shows promise in monitoring temperature changes which are reflected in speed of sound changes in tissue.\ud \u

    Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats\ud

    Get PDF
    Rod-shaped gold nanoparticles exhibit intense and narrow absorption peaks for light in the far-red and near-infrared wavelength regions, owing to the excitation of longitudinal plasmons. Light absorption is followed predominantly by non radiative de-excitation, and the released heat and subsequent temperature rise cause strong photoacoustic (optoacoustic) signals to be produced. This feature combined with the relative inertness of gold, and its favorable surface chemistry, which permits affinity biomolecule coupling, has seen gold nanorods (AuNR) attracting much attention as contrast agents and molecular probes for photoacoustic imaging. In this article we provide an short overview of the current status of the use of AuNR in molecular imaging using photoacoustics. We further examine the state of the art in various chemical, physical and biochemical phenomena that have implications for the future photoacoustic applications of these particles. We cover the route through fine-tuning of AuNR synthetic procedures, toxicity reduction by appropriate coatings, in vitro cellular interactions of AuNRs, attachment of targeting antibodies, in vivo fate of the particles and the effects of certain light interactions with the AuN

    Quantification of spatial intensity correlations and photodetector intensity fluctuations of coherent light reflected from turbid particle suspensions

    Get PDF
    We present a model for predicting the spatial intensity correlation function of dynamic speckle patterns formed by light backscattered from turbid suspensions, and an experimental validation of these predictions. The spatial correlation varies remarkably with multiple scattering. The provided computational scheme is a step towards correctly interpreting signals obtained from instruments based on the measurement of dynamic speckle patterns in the far field

    Measurement of particle flux in a static matrix with suppressed influence of optical properties, using low coherence interferometry

    Get PDF
    Perfusion measurements using conventional laser Doppler techniques are affected by the variations in tissue optical properties. Differences in absorption and scattering will induce different path lengths and consequently will alter the probability that a Doppler shift will occur. In this study, the fraction of Doppler shifted photons and the Doppler broadening of a dynamic medium, are measured with a phase modulated low coherence Mach-Zehnder interferometer. Path length-resolved dynamic light scattering measurements are performed in various media having a constant concentration of dynamic particles inside a static matrix with different scattering properties and the results are compared with a conventional laser Doppler technique, with a simple model and with Monte Carlo simulations. We demonstrate that, for larger optical path lengths, the scattering coefficient of the static matrix in which the moving particles are embedded have a small to minimal effect on the measured fraction of Doppler shifted photons and on the measured average Doppler frequency of the Doppler shifted light. This approach has potential applications in measuring perfusion independent of the influence of optical properties in the static tissue matrix

    High maternal androstenedione levels during pregnancy in a small precocial mammal with female genital masculinisation

    Get PDF
    -Masculinisation of female genitalia is an intriguing phenomenon amongst some mammalian species and its endocrinological basis as well as its adaptive value is still heavily debated. We recently reported female genital masculinisation in Cavia magna. The closely related C. aperea, does not show such masculinisation providing an unique opportunity to investigate potential endocrinological mechanisms underlying this difference. For both species we determined plasma levels of androstenedione and testosterone in adults of both sexes, and in females during different stages of pregnancy. Consistent with the normal mammalian pattern males showed higher levels of both androgens than conspecific females. Androgen profiles during pregnancy differed significantly between C. magna and C. aperea females: during mid-pregnancy androstenedione levels were strongly elevated in the masculinised C. magna, but not in C. aperea, indicating that high levels of this androgen may be involved in the differentiation of masculinized genitalia in female C. magna, as has been suggested for the spotted hyena. In both C. magna and the spotted hyena the pups show a highly advanced state of maturation, but in contrast to the hyena female C. magna are not overly aggressive. We therefore propose that female genital masculinisation might be a side effect of early exposure to elevated levels of maternal androgens that might be selected for to speed up precocial development.
    • …
    corecore