14 research outputs found

    Importance of mRNA secondary structural elements for the expression of influenza virus genes.

    No full text
    Development of novel vaccines and therapeutics often requires efficient expression of recombinant viral proteins. Here we show that mutations in essential functional regions of conserved influenza proteins NP and NS1, lead to reduced expression of these genes in vitro. According to in silico analysis, these mRNA regions possess distinct secondary structures sensitive to mutations. We identified a novel structural feature within a region in NS1 mRNA that encodes amino acids essential for NS1 function. Mutations altering this mRNA element lead to significantly reduced protein expression. Conversely, expression was not affected by mutations resulting in amino acid substitutions, when they were designed to preserve this secondary RNA structural element. Furthermore, altering this structure significantly reduced RNA transcription without affecting mRNA stability. Therefore, distinct internal secondary structures of viral mRNA may be important for viral gene expression. If such elements encode amino acids essential for the protein function, then early selection against mutations in this region will be beneficial for the virus. This might point at yet another mechanism of viral evolution, especially for RNA viruses. Finally, introducing mutations into viral genes while preserving their secondary RNA structure, suggests a new method for the generation of efficiently expressed recombinants of viral proteins

    P-LAP/IRAP-induced cell proliferation and glucose uptake in endometrial carcinoma cells via insulin receptor signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperglycemia or hyperinsulinemia contributes to poorer endometrial cancer survival. It was shown that P-LAP/IRAP translocates to the plasma membrane in response to insulin stimulation. Recently, we demonstrated that P-LAP/IRAP is associated with a poor prognosis in endometrial adenocarcinoma patients. The aim of this study was to examine whether the malignant potential of endometrial cancer enhanced by P-LAP/IRAP is due to increased glucose uptake via the P-LAP/IRAP-mediated activation of insulin signaling.</p> <p>Methods</p> <p>We transfected P-LAP/IRAP cDNA into A-MEC cells (endometrial adenocarcinoma cell line), and A-MEC-LAP cells expressed a remarkably high level of GLUT4 proteins.</p> <p>Results</p> <p><sup>3</sup>H-2-deoxyglucose uptake which responds to insulin in A-MEC-LAP cells was significantly higher than that of A-MEC-pc cells. A-MEC-LAP cells exhibited a significant growth-stimulatory effect compared to A-MEC-pc cells. A-MEC-LAP cells expressed a remarkably high level of p85PI3K protein compared to A-MEC-pc cells, and showed a higher degree of AKT phosphorylation by insulin stimulation.</p> <p>Conclusion</p> <p>In summary, P-LAP/IRAP was involved in the increasing malignant potential of endometrial cancer mediated by insulin. P-LAP/IRAP was suggested to be a potential new target of molecular-targeted therapy for endometrial cancer.</p

    The proteosomal degradation of fusion proteins cannot be predicted from the proteosome susceptibility of their individual components

    No full text
    It is assumed that the proteosome-processing characteristics of fusion constructs can be predicted from the sum of the proteosome sensitivity of their components. In the present study, we observed that a fusion construct consisting of proteosome-degradable proteins does not necessarily result in a proteosome-degradable chimera. Conversely, fusion of proteosome-resistant proteins may result in a proteosome-degradable composite. We previously demonstrated that conserved influenza proteins can be unified into a single fusion antigen that is protective, and that vaccination with combinations of proteosome-resistant and proteosome-degradable antigens resulted in an augmented T-cell response. In the present study we constructed proteosome-degradable mutants of conserved influenza proteins NP, M1, NS1, and M2. These were then fused into multipartite proteins in different positions. The stability and degradation profiles of these fusion constructs were demonstrated to depend on the relative position of the individual proteins within the chimeric molecule. Combining unstable sequences of either NP and M1 or NS1 and M2 resulted in either rapidly proteosome degraded or proteosome-resistant bipartite fusion mutants. However, further unification of the proteosome-degradable forms into a single four-partite fusion molecule resulted in relatively stable chimeric proteins. Conversely, the addition of proteosome-resistant wild-type M2 to proteosome-resistant NP–M1–NS1 fusion protein lead to the decreased stability of the resulting four-partite multigene products, which in one case was clearly proteosome dependent. Additionally, a highly destabilized form of M1 failed to destabilize the wild-type NP. Collectively, we did not observe any additive effect leading to proteosomal degradation/nondegradation of a multigene construct

    GLUT4 Retention in Adipocytes Requires Two Intracellular Insulin-regulated Transport Steps

    No full text
    Insulin regulates glucose uptake into fat and muscle by modulating the distribution of the GLUT4 glucose transporter between the surface and interior of cells. The GLUT4 trafficking pathway overlaps with the general endocytic recycling pathway, but the degree and functional significance of the overlap are not known. In this study of intact adipocytes, we demonstrate, by using a compartment-specific fluorescence-quenching assay, that GLUT4 is equally distributed between two intracellular pools: the transferrin receptor-containing endosomes and a specialized compartment that excludes the transferrin receptor. These pools of GLUT4 are in dynamic communication with one another and with the cell surface. Insulin-induced redistribution of GLUT4 to the surface requires mobilization of both pools. These data establish a role for the general endosomal system in the specialized, insulin-regulated trafficking of GLUT4. Trafficking through the general endosomal system is regulated by rab11. Herein, we show that rab11 is required for the transport of GLUT4 from endosomes to the specialized compartment and for the insulin-induced translocation to the cell surface, emphasizing the importance of the general endosomal pathway in the specialized trafficking of GLUT4. Based on these findings we propose a two-step model for GLUT4 trafficking in which the general endosomal recycling compartment plays a specialized role in the insulin-regulated traffic of GLUT4. This compartment-based model provides the framework for understanding insulin-regulated trafficking at a molecular level
    corecore