28,854 research outputs found

    A 3D Numerical Method for Studying Vortex Formation Behind a Moving Plate

    Get PDF
    In this paper, we introduce a three-dimensional numerical method for computing the wake behind a flat plate advancing perpendicular to the flow. Our numerical method is inspired by the panel method of J. Katz and A. Plotkin [J. Katz and A. Plotkin, Low-speed Aerodynamics, 2001] and the 2D vortex blob method of Krasny [R. Krasny, Lectures in Appl. Math., 28 (1991), pp. 385--402]. The accuracy of the method will be demonstrated by comparing the 3D computation at the center section of a very high aspect ratio plate with the corresponding two-dimensional computation. Furthermore, we compare the numerical results obtained by our 3D numerical method with the corresponding experimental results obtained recently by Ringuette [M. J. Ringuette, Ph.D. Thesis, 2004] in the towing tank. Our numerical results are shown to be in excellent agreement with the experimental results up to the so-called formation time

    Algebraic Reduction of Feynman Diagrams to Scalar Integrals: a Mathematica implementation of LERG-I

    Get PDF
    A Mathematica implementation of the program LERG-I is presented that performs the reduction of tensor integrals, encountered in one-loop Feynman diagram calculations, to scalar integrals. The program was originally coded in REDUCE and in that incarnation was applied to a number of problems of physical interest.Comment: 16 page

    Prospects for Direct CP Violaton in Exclusive and Inclusive Charmless B decays

    Full text link
    Within the Standard Model, CP rate asymmetries for B→K−π+,0B\to K^-\pi^{+,0} could reach 10%. With strong final state phases, they could go up to 20--30%, even for Kˉ0π−\bar K^0\pi^- mode which would have opposite sign. We can account for K−π+K^-\pi^{+}, Kˉ0π−\bar K^0\pi^- and ϕK\phi K rate data with new physics enhanced color dipole coupling and destructive interference. Asymmetries could reach 40--60% for KπK\pi and ϕK\phi K modes and are all of the same sign. We are unable to account for K−π0K^-\pi^0 rate. Our inclusive study supports our exclusive results.Comment: Minor changes, correct a small bug in Fig. 1(b). Version to appear in Phys. Rev. Let

    Four Statements about the Fourth Generation

    Get PDF
    This summary of the Workshop "Beyond the 3-generation SM in the LHC era" presents a brief discussion of the following four statements about the fourth generation: 1) It is not excluded by EW precision data; 2) It addresses some of the currently open questions; 3) It can accommodate emerging possible hints of new physics; 4) LHC has the potential to discover or fully exclude it.Comment: Summary of the "Beyond the 3-generation SM in the LHC era" Workshop, CERN, September 4-5, 2008; 7 pages. V2: updated bibliography and minor typos fixed. To appear in PMC Physics

    Geometrical, electronic and magnetic properties of Na0.5_{0.5}CoO2_2 from first principles

    Full text link
    We report a first-principles projector augmented wave (PAW) study on Na0.5_{0.5}CoO2_2. With the sodium ion ordered insulating phase being identified in experiments, pure density functional calculations fail to predict an insulating ground state, which indicates that Na ordering alone can not produce accompanying Co charge ordering, if additional correlation is not properly considered. At this level of theory, the most stable phase presents ferromagnetic ordering within the CoO2_2 layer and antiferromagnetic coupling between these layers. When the on-site Coulomb interaction for Co 3d orbitals is included by an additional Hubbard parameter UU, charge ordered insulating ground state can be obtained. The effect of on-site interaction magnitude on electronic structure is studied. At a moderate value of UU (4.0 eV for example), the ground state is antiferromagnetic, with a Co4+^{4+} magnetic moment about 1.0 μB\mu_B and a magnetic energy of 0.12 eV/Co. The rehybridization process is also studied in the DFT+U point of view.Comment: 21 pages, 7 figure

    Bounds on the mass of the b' quark, revisited

    Full text link
    Recent results from the DELPHI collaboration led us to review the present bounds on the b' quark mass. We use all available experimental data for m_b' > 96 GeV to constrain the b' quark mass as a function of the Cabibbo-Kobayashi-Maskawa elements in a sequential four generations model. We find that there is still room for a b' with a mass larger than 96 GeV.Comment: 9 pages and 7 figures. REVTEX

    Gravitational Corrections to Φ4\Phi^{4} Theory with Spontaneously Broken Symmetry

    Full text link
    We consider a complex scalar Φ4\Phi^4 theory with spontaneously broken global U(1) symmetry, minimally coupling to perturbatively quantized Einstein gravity which is treated as an effective theory at the energy well below the Planck scale. Both the lowest order pure real scalar correction and the gravitational correction to the renormalization of the Higgs sector in this model have been investigated. Our results show that the gravitational correction renders the renormalization of the Higgs sector in this model inconsistent while the pure real scalar correction to it leads to a compatible renormalization.Comment: 11 pages, 24 figure

    On the non-equivalence of Lorenz System and Chen System

    Full text link
    In this paper, we prove that the Chen system with a set of chaotic parameters is not smoothly equivalent to the Lorenz system with any parameters
    • …
    corecore