22 research outputs found

    Mechanism of S-nitrosothiol formation and degradation mediated by copper ions

    Get PDF
    Experimental evidence is presented supporting a mechanism of S-nitrosothiol formation and degradation mediated by copper ions using bovine serum albumin, human hemoglobin and glutathione as models. We found that Cu(2+), but not Fe(3+), induces in the presence of NO a fast S-nitrosation of bovine serum albumin and human hemoglobin, and the reaction is prevented by thiol blocking reagents. During the reaction, Cu(+) is accumulated and accounts for destabilization of the S-nitrosothiol formed. In contrast, glutathione rapidly dimerizes in the presence of Cu(2+), the reaction competing with S-nitrosation and therefore preventing the formation of S-nitrosoglutathione. We have combined the presented role of Cu(2+) in S-nitrosothiol formation with the known destabilizing effect of Cu(+), providing a unique simple picture where the redox state of copper determines either the NO release from S-nitrosothiols or the NO scavenging by thiol groups. The reactions described are fast, efficient, and may occur at micromolar concentration of all reactants. We propose that the mechanism presented may provide a general method for in vitro S-nitrosation I.F. 7.

    Nitric oxide and cellular respiration

    No full text
    The role of nitric oxide (NO) as a signalling molecule involved in many pathophysiological processes (e.g., smooth muscle relaxation, inflammation, neurotransmission, apoptosis) has been elaborated during the last decade. Since NO has also been found to inhibit cellular respiration, we review here the available information on the interactions of NO with cytochrome c oxidase (COX), the terminal enzyme of the respiratory chain. The effect of NO on cellular respiration is first summarized to present essential evidence for the fact that NO is a potent reversible inhibitor of in vivo O2 consumption. This information is then correlated with available experimental evidence on the reactions of NO with purified COX. Finally, since COX has been proposed to catalyze the degradation of NO into either nitrous oxide (N2O) or nitrite, we consider the putative role of this enzyme in the catabolism of NO in vivo I.F. 5.2

    Nitric oxide and cellular respiration

    No full text

    Chloride bound to oxidized cytochrome oxidase controls reaction with nitric oxide

    No full text
    The reaction of nitric oxide (NO) with oxidized fast cytochrome c oxidase was investigated by stopped-flow, amperometry, and EPR, using the enzyme as prepared or after "pulsing." A rapid reduction of cytochrome a is observed with the pulsed, but not with the enzyme as prepared. The reactive species (lambdamax = 424 nm) reacts with NO at k = 2.2 x 10(5) M-1 s-1 at 20 degreesC and is stable for hours unless Cl- is added, in which case it decays slowly (t1/2 approximately 70 min) to an unreactive state (lambdamax = 423 nm) similar to the enzyme as prepared. Thus, Cl- binding prevents a rapid reaction of NO with the oxidized binuclear center. EPR experiments show no new signals within 15 s after addition of NO to the enzyme as prepared. Amperometric measurements show that the pulsed NO-reactive enzyme reacts with high affinity and a stoichiometry of 1 NO/aa3, whereas the enzyme as prepared reacts to a very small extent (<20%). In both cases, the reactivity is abolished by pre-incubation with cyanide. These experiments suggest that the effect of "pulsing" the enzyme, which leads to enhanced NO reactivity, arises from removing Cl- bound at the oxidized cytochrome a3-CuB site I.F. 7.

    The heme-copper oxidases of Thermus thermophilus catalyze the reduction of nitric oxide: Evolutionary implications

    No full text
    We show that the heme-copper terminal oxidases of Thermus thermophilus (called ba(3) and caa(3)) are able to catalyze the reduction of nitric oxide (NO) to nitrous oxide (N(2)O) under reducing anaerobic conditions. The rate of NO consumption and N(2)O production were found to be linearly dependent on enzyme concentration, and activity was abolished by enzyme denaturation. Thus, contrary to the eukaryotic enzyme, both T. thermophilus oxidases display a NO reductase activity (3.0 ± 0.7 mol NO/mol ba(3) × min and 32 ± 8 mol NO/mol caa(3) × min at [NO] ≈ 50 μM and 20°C) that, though considerably lower than that of bona fide NO reductases (300–4,500 mol NO/mol enzyme × min), is definitely significant. We also show that for ba(3) oxidase, NO reduction is associated to oxidation of cytochrome b at a rate compatible with turnover, suggesting a mechanism consistent with the stoichiometry of the overall reaction. We propose that the NO reductase activity of T. thermophilus oxidases may depend on a peculiar Cu(B)(+) coordination, which may be revealed by the forthcoming three-dimensional structure. These findings support the hypothesis of a common phylogeny of aerobic respiration and bacterial denitrification, which was proposed on the basis of structural similarities between the Pseudomonas stutzeri NO reductase and the cbb(3) terminal oxidases. Our findings represent functional evidence in support of this hypothesis

    Zinc Thiolate Reactivity toward Nitrogen Oxides: Insights into the Interaction of Zn[superscript 2+] with S-Nitrosothiols and Implications for Nitric Oxide Synthase

    No full text
    Zinc thiolate complexes containing N[subscript 2]S tridentate ligands were prepared to investigate their reactivity toward reactive nitrogen species, chemistry proposed to occur at the zinc tetracysteine thiolate site of nitric oxide synthase (NOS). The complexes are unreactive toward nitric oxide (NO) in the absence of dioxygen, strongly indicating that NO cannot be the species directly responsible for S-nitrosothiol formation and loss of Zn[superscript 2+] at the NOS dimer interface in vivo. S-Nitrosothiol formation does occur upon exposure of zinc thiolate solutions to NO in the presence of air, however, or to NO[subscript 2] or NOBF[subscript 4], indicating that these reactive nitrogen/oxygen species are capable of liberating zinc from the enzyme, possibly through generation of the S-nitrosothiol. Interaction between simple Zn[superscript 2+] salts and preformed S-nitrosothiols leads to decomposition of the −SNO moiety, resulting in release of gaseous NO and N[subscript 2]O. The potential biological relevance of this chemistry is discussed.National Science Foundation (U.S.) (Grant CHE0907905)National Institutes of Health (U.S.) (Grant 1A10RR013886-01
    corecore