749 research outputs found

    Long wavelength spin dynamics of ferromagnetic condensates

    Full text link
    We obtain the equations of motion for a ferromagnetic Bose condensate of arbitrary spin in the long wavelength limit. We find that the magnetization of the condensate is described by a non-trivial modification of the Landau-Lifshitz equation, in which the magnetization is advected by the superfluid velocity. This hydrodynamic description, valid when the condensate wavefunction varies on scales much longer than either the density or spin healing lengths, is physically more transparent than the corresponding time-dependent Gross-Pitaevskii equation. We discuss the conservation laws of the theory and its application to the analysis of the stability of magnetic helices and Larmor precession. Precessional instabilities in particular provide a novel physical signature of dipolar forces. Finally, we discuss the anisotropic spin wave instability observed in the recent experiment of Vengalattore et. al. (Phys. Rev. Lett. 100, 170403, (2008)).Comment: arXiv version contains additional Section V relevant to the experiment of Vengalattore et. al. (Phys. Rev. Lett. 100, 170403, (2008)

    Internal Vortex Structure of a Trapped Spinor Bose-Einstein Condensate

    Get PDF
    The internal vortex structure of a trapped spin-1 Bose-Einstein condensate is investigated. It is shown that it has a variety of configurations depending on, in particular, the ratio of the relevant scattering lengths and the total magnetization.Comment: replacement; minor grammatical corrections but with additional figure

    From multimode to monomode guided atom lasers: an entropic analysis

    Full text link
    We have experimentally demonstrated a high level of control of the mode populations of guided atom lasers (GALs) by showing that the entropy per particle of an optically GAL, and the one of the trapped Bose Einstein condensate (BEC) from which it has been produced are the same. The BEC is prepared in a crossed beam optical dipole trap. We have achieved isentropic outcoupling for both magnetic and optical schemes. We can prepare GAL in a nearly pure monomode regime (85 % in the ground state). Furthermore, optical outcoupling enables the production of spinor guided atom lasers and opens the possibility to tailor their polarization

    Anisotropic excitation spectrum of a dipolar quantum Bose gas

    Full text link
    We measure the excitation spectrum of a dipolar Chromium Bose Einstein Condensate with Raman-Bragg spectroscopy. The energy spectrum depends on the orientation of the dipoles with respect to the excitation momentum, demonstrating an anisotropy which originates from the dipole-dipole interactions between the atoms. We compare our results with the Bogoliubov theory based on the local density approximation, and, at large excitation wavelengths, with numerical simulations of the time dependent Gross-Pitaevskii equation. Our results show an anisotropy of the speed of soundComment: 3 figure

    Solitons in a trapped spin-1 atomic condensate

    Full text link
    We numerically investigate a particular type of spin solitons inside a trapped atomic spin-1 Bose-Einstein condensate (BEC) with ferromagnetic interactions. Within the mean field theory approximation, our study of the solitonic dynamics shows that the solitonic wave function, its center of mass motion, and the local spin evolutions are stable and are intimately related to the domain structures studied recently in spin-1 87^{87}Rb condensates. We discuss a rotating reference frame wherein the dynamics of the solitonic local spatial spin distribution become time independent.Comment: 8 pages, 8 color eps figure

    Dynamical instability and domain formation in a spin-1 Bose condensate

    Full text link
    We interpret the recently observed spatial domain formation in spin-1 atomic condensates as a result of dynamical instability. Within the mean field theory, a homogeneous condensate is dynamically unstable (stable) for ferromagnetic (antiferromagnetic) atomic interactions. We find this dynamical instability naturally leads to spontaneous domain formation as observed in several recent experiments for condensates with rather small numbers of atoms. For trapped condensates, our numerical simulations compare quantitatively to the experimental results, thus largely confirming the physical insight from our analysis of the homogeneous case.Comment: RevTex4, 4 pages with 3 color eps figure, to appear in Phys. Rev. Let
    • 

    corecore