193 research outputs found
Spontaneous decay of excited atomic states near a carbon nanotube
Spontaneous decay process of an excited atom placed inside or outside (near
the surface) a carbon nanotube is analyzed. Calculations have been performed
for various achiral nanotubes. The effect of the nanotube surface has been
demonstrated to dramatically increase the atomic spontaneous decay rate -- by 6
to 7 orders of magnitude compared with that of the same atom in vacuum. Such an
increase is associated with the nonradiative decay via surface excitations in
the nanotube.Comment: 8 pages, 3 figure
Quantum tight-binding chains with dissipative coupling
We present a one-dimensional tight-binding chain of two-level systems coupled
only through common dissipative Markovian reservoirs. This quantum chain can
demonstrate anomalous thermodynamic behavior contradicting Fourier law.
Population dynamics of individual systems of the chain is polynomial with the
order determined by the initial state of the chain. The chain can simulate
classically hard problems, such as multi-dimensional random walks
Shaping field correlations with quantum antennas
Quantum antennas can shape the spatial entanglement of emitted photons
originating from specific initial non-Dicke entangled states of antenna
emitters. In contrast to a classical antenna, a quantum antenna might not be
affecting the amplitudes and intensities distribution of the field, but only
shaping the second and higher order correlations. The shape and directivity of
the correlations can be optimized using quantum state inference techniques. The
character of the correlations can also be controlled by changing both the
geometry and the initial state of the antenna. Positive and negative correlated
twin-photons, as well as multi-photons entangled states can be produced from
the same antenna for different initial states of the emitters. Our approach to
antenna design can find applications in imaging and high-precision sensing, as
well as in the development of an emitter-field interface for quantum
information processing
Thermal Radiation From Carbon Nanotube in Terahertz Range
The thermal radiation from an isolated finite-length carbon nanotube (CNT) is
theoretically investigated both in near- and far-field zones. The formation of
the discrete spectrum in metallic CNTs in the terahertz range is demonstrated
due to the reflection of strongly slowed-down surface-plasmon modes from CNT
ends. The effect does not appear in semiconductor CNTs. The concept of CNT as a
thermal nanoantenna is proposed.Comment: 5 pages, 3 figure
Microscopic theory of quantum dot interactions with quantum light: local field effect
A theory of both linear and nonlinear electromagnetic response of a single QD
exposed to quantum light, accounting the depolarization induced local--field
has been developed. Based on the microscopic Hamiltonian accounting for the
electron--hole exchange interaction, an effective two--body Hamiltonian has
been derived and expressed in terms of the incident electric field, with a
separate term describing the QD depolarization. The quantum equations of motion
have been formulated and solved with the Hamiltonian for various types of the
QD excitation, such as Fock qubit, coherent fields, vacuum state of
electromagnetic field and light with arbitrary photonic state distribution. For
a QD exposed to coherent light, we predict the appearance of two oscillatory
regimes in the Rabi effect separated by the bifurcation. In the first regime,
the standard collapse--revivals phenomenon do not reveal itself and the QD
population inversion is found to be negative, while in the second one, the
collapse--revivals picture is found to be strongly distorted as compared with
that predicted by the standard Jaynes-Cummings model. %The model developed can
easily be extended to %%electromagnetic excitation. For the case of QD
interaction with arbitrary quantum light state in the linear regime, it has
been shown that the local field induce a fine structure of the absorbtion
spectrum. Instead of a single line with frequency corresponding to which the
exciton transition frequency, a duplet is appeared with one component shifted
by the amount of the local field coupling parameter. It has been demonstrated
the strong light--mater coupling regime arises in the weak-field limit. A
physical interpretation of the predicted effects has been proposed.Comment: 14 pages, 7 figure
- …