146 research outputs found

    The third dose of mRNA SARS-CoV-2 vaccines enhances the spike-specific antibody and memory B cell response in myelofibrosis patients

    Get PDF
    Vaccination against SARS-CoV-2 using mRNA-based vaccines has been highly recommended for fragile subjects, including myelofibrosis patients (MF). Available data on the immune responsiveness of MF patients to mRNA SARS-CoV-2 vaccination, and the impact of the therapy with the JAK inhibitor ruxolitinib, are still fragmented. Here, we profile the spike-specific IgG and memory B-cell response in MF patients, treated or not with ruxolitinib, after the second and the third dose of SARS-CoV-2 BNT162b2 (BioNTech) and mRNA-1273 (Moderna) vaccines. Plasma and peripheral blood mononuclear cells samples were collected before vaccination, post the second and the third doses and tested for spike-specific antibodies, ACE2/RBD antibody inhibition binding activity and spike-specific B cells. The third vaccine dose significantly increased the spike-specific IgG titers in both ruxolitinib-treated and untreated patients, and strongly enhanced the percentage of subjects with antibodies capable of in vitro blocking ACE2/RBD interaction, from 50% up to 80%. While a very low frequency of spike-specific B cells was measured in blood 7 days after the second vaccination dose, a strong and significant increase was elicited by the third dose administration, generating a B cell response similar to the one detected in healthy controls. Despite the overall positive impact of the third dose in MF patients, two patients that were under active concomitant immunosuppressive treatment at the time of vaccination, and a patient that received lymphodepleting therapies in the past, remained low responders. The third mRNA vaccine dose strongly increases the SARS-CoV-2 specific humoral and B cell responses in MF patients, promoting a reactivation of the immune response similar to the one observed in healthy controls

    Fludarabine, high-dose cytarabine and idarubicin-based induction may overcome the negative prognostic impact of flt3-itd in npm1 mutated aml, irrespectively of flt3-itd allelic Burden

    Get PDF
    The mutations of NPM1 and FLT3-ITD represent the most frequent genetic aberration in acute myeloid leukemia. Indeed, the presence of an NPM1 mutation reduces the negative prognostic impact of FLT3-ITD in patients treated with conventional \u201c3+7\u201d induction. However, little information is available on their prognostic role with intensified regimens. Here, we investigated the efficacy of a fludarabine, high-dose cytarabine and idarubicin induction (FLAI) in 149 consecutive fit AML patients (median age 52) carrying the NPM1 and/or FLT3-ITD mutation, treated from 2008 to 2018. One-hundred-and-twenty-nine patients achieved CR (86.6%). After a median follow up of 68 months, 3-year overall survival was 58.6%. Multivariate analysis disclosed that both NPM1mut (p < 0.05) and ELN 2017 risk score (p < 0.05) were significant predictors of survival. NPM1-mutated patients had a favorable outcome, with no significant differences between patients with or without concomitant FLT3-ITD (p = 0.372), irrespective of FLT3-ITD allelic burden. Moreover, in landmark analysis, performing allogeneic transplantation (HSCT) in first CR proved to be beneficial only in ELN 2017 high-risk patients. Our data indicate that FLAI exerts a strong anti-leukemic effect in younger AML patients with NPM1mut and question the role of HSCT in 1st CR in NPM1mut patients with concomitant FLT3-ITD

    Fludarabine, high-dose cytarabine and idarubicin-based induction may overcome the negative prognostic impact of flt3-itd in npm1 mutated aml, irrespectively of flt3-itd allelic Burden

    Get PDF
    The mutations of NPM1 and FLT3-ITD represent the most frequent genetic aberration in acute myeloid leukemia. Indeed, the presence of an NPM1 mutation reduces the negative prognostic impact of FLT3-ITD in patients treated with conventional “3+7” induction. However, little information is available on their prognostic role with intensified regimens. Here, we investigated the efficacy of a fludarabine, high-dose cytarabine and idarubicin induction (FLAI) in 149 consecutive fit AML patients (median age 52) carrying the NPM1 and/or FLT3-ITD mutation, treated from 2008 to 2018. One-hundred-and-twenty-nine patients achieved CR (86.6%). After a median follow up of 68 months, 3-year overall survival was 58.6%. Multivariate analysis disclosed that both NPM1mut (p &lt; 0.05) and ELN 2017 risk score (p &lt; 0.05) were significant predictors of survival. NPM1-mutated patients had a favorable outcome, with no significant differences between patients with or without concomitant FLT3-ITD (p = 0.372), irrespective of FLT3-ITD allelic burden. Moreover, in landmark analysis, performing allogeneic transplantation (HSCT) in first CR proved to be beneficial only in ELN 2017 high-risk patients. Our data indicate that FLAI exerts a strong anti-leukemic effect in younger AML patients with NPM1mut and question the role of HSCT in 1st CR in NPM1mut patients with concomitant FLT3-ITD

    Accuracy and performance evaluation in the geneticoptimization of nonlinear systems for active noise control

    No full text
    This paper investigates the performance of genetic optimization in a nonlinear system for active noise control based on Volterra filters. While standard Filtered-X algorithms may converge to local minima, genetic algorithms (GAs) may handle this problem efficiently. In addition, this class of algorithms does not require the identification of the secondary paths. This is a key advantage of the proposed approach. Computer simulations show that a simple GA is able to find satisfactory solutions even in the presence of nonlinearities in the secondary path. The results are more accurate than using the linear techniques and the nonlinear systems based on classical LMS algorithms
    corecore