15 research outputs found

    Ebola virus glycoprotein stimulates IL-18 dependent natural killer cell responses

    Get PDF
    BACKGROUND: NK cells are activated by innate cytokines and viral ligands to kill virus-infected cells; these functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined. METHODS: The novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analysed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen, and in response to in vitro Ebola glycoprotein stimulation of PBMC isolated before and after vaccination. RESULTS: We show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein-induced activation of NK cells was dependent on accessory cells and TLR-4-dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whilst IFN-γ secretion was restricted by high concentrations of IL-10. CONCLUSION: This study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola GP. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02313077. FUNDING: U.K. Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (Grant 115861) and Crucell Holland (now Janssen Vaccines & Prevention B.V.), European Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA)

    Immune responses to novel adenovirus type 26 and modified vaccinia virus Ankara-vectored ebola vaccines at 1 year

    No full text
    The Ebola virus vaccine strategies evaluated by the WHO in response to the recent outbreak in West Africa included a heterologous prime/boost schedule of the adenovirus type 26 vector vaccine encoding Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia virus Ankara vector vaccine, encoding glycoproteins from Ebola virus, Sudan virus, Marburg virus, and Tai Forest virus nucleoprotein (MVA-BN-Filo). This schedule has been shown to induce immune responses that persist for 8-months post priming immunization, with 100% of vaccine recipients retaining Ebola virus glycoprotein-specific antibodies

    Immune responses to novel adenovirus type 26 and modified vaccinia virus Ankara-vectored ebola vaccines at 1 year

    No full text
    The Ebola virus vaccine strategies evaluated by the WHO in response to the recent outbreak in West Africa included a heterologous prime/boost schedule of the adenovirus type 26 vector vaccine encoding Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia virus Ankara vector vaccine, encoding glycoproteins from Ebola virus, Sudan virus, Marburg virus, and Tai Forest virus nucleoprotein (MVA-BN-Filo). This schedule has been shown to induce immune responses that persist for 8-months post priming immunization, with 100% of vaccine recipients retaining Ebola virus glycoprotein-specific antibodies

    Ebola virus glycoprotein stimulates IL-18–dependent natural killer cell responses

    No full text
    Background NK cells are activated by innate cytokines and viral ligands to kill virus-infected cells. These functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined. Methods The novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analyzed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen and in response to in vitro Ebola glycoprotein stimulation of PBMCs isolated before and after vaccination. Results We show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein–induced activation of NK cells was dependent on accessory cells and TLR-4–dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whereas IFN-γ secretion was restricted by high concentrations of IL-10. Conclusion This study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola glycoprotein. Trial registration ClinicalTrials.gov NCT02313077.</p

    Antibody-dependent natural killer cell activation after Ebola vaccination

    No full text
    Background Antibody Fc-mediated functions, such as antibody-dependent cellular cytotoxicity, contribute to vaccine-induced protection against viral infections. Fc-mediated function of anti-Ebola glycoprotein (GP) antibodies suggest that Fc-dependent activation of effector cells, including natural killer (NK) cells, could play a role in vaccination against Ebola virus disease. Methods We analyzed the effect on primary human NK cell activation of anti-Ebola GP antibody in the serum of United Kingdom–based volunteers vaccinated with the novel 2-dose heterologous adenovirus type 26.ZEBOV, modified vaccinia Ankara–BN-Filo vaccine regimen. Results We demonstrate primary human NK cell CD107a and interferon γ expression, combined with down-regulation of CD16, in response to recombinant Ebola virus GP and post-vaccine dose 1 and dose 2 serum samples. These responses varied significantly with vaccine regimen, and NK cell activation was found to correlate with anti-GP antibody concentration. We also reveal an impact of NK cell differentiation phenotype on antibody-dependent NK cell activation, with highly differentiated CD56dimCD57+ NK cells being the most responsive. Conclusions These findings highlight the dual importance of vaccine-induced antibody concentration and NK cell differentiation status in promoting Fc-mediated activation of NK cells after vaccination, raising a potential role for antibody-mediated NK cell activation in vaccine-induced immune responses.</p

    Safety and immunogenicity of 2-dose heterologous Ad26.ZEBOV, MVA-BN-Filo Ebola vaccination in healthy and HIV-infected adults: A randomised, placebo-controlled Phase II clinical trial in Africa

    No full text
    Background We investigated safety, tolerability, and immunogenicity of the heterologous 2-dose Ebola vaccination regimen in healthy and HIV-infected adults with different intervals between Ebola vaccinations. Methods and findings In this randomised, observer-blind, placebo-controlled Phase II trial, 668 healthy 18- to 70-year-olds and 142 HIV-infected 18- to 50-year-olds were enrolled from 1 site in Kenya and 2 sites each in Burkina Faso, Cote d’Ivoire, and Uganda. Participants received intramuscular Ad26.ZEBOV followed by MVA-BN-Filo at 28-, 56-, or 84-day intervals, or saline. Females represented 31.4% of the healthy adult cohort in contrast to 69.7% of the HIV-infected cohort. A subset of healthy adults received booster vaccination with Ad26.ZEBOV or saline at Day 365. Following vaccinations, adverse events (AEs) were collected until 42 days post last vaccination and serious AEs (SAEs) were recorded from signing of the ICF until the end of the study. The primary endpoint was safety, and the secondary endpoint was immunogenicity. Anti-Ebola virus glycoprotein (EBOV GP) binding and neutralising antibodies were measured at baseline and at predefined time points throughout the study. The first participant was enrolled on 9 November 2015, and the date of last participant’s last visit was 12 February 2019. No vaccine-related SAEs and mainly mild-to-moderate AEs were observed among the participants. The most frequent solicited AEs were injection-site pain (local), and fatigue, headache, and myalgia (systemic), respectively. Twenty-one days post-MVA-BN-Filo vaccination, geometric mean concentrations (GMCs) with 95% confidence intervals (CIs) of EBOV GP binding antibodies in healthy adults in 28-, 56-, and 84-day interval groups were 3,085 EU/mL (2,648 to 3,594), 7,518 EU/mL (6,468 to 8,740), and 7,300 EU/mL (5,116 to 10,417), respectively. In HIV-infected adults in 28- and 56-day interval groups, GMCs were 4,207 EU/mL (3,233 to 5,474) and 5,283 EU/mL (4,094 to 6,817), respectively. Antibody responses were observed until Day 365. Ad26.ZEBOV booster vaccination after 1 year induced an anamnestic response. Study limitations include that some healthy adult participants either did not receive dose 2 or received dose 2 outside of their protocol-defined interval and that the follow-up period was limited to 365 days for most participants. Conclusions Ad26.ZEBOV, MVA-BN-Filo vaccination was well tolerated and immunogenic in healthy and HIV-infected African adults. Increasing the interval between vaccinations from 28 to 56 days improved the magnitude of humoral immune responses. Antibody levels persisted to at least 1 year, and Ad26.ZEBOV booster vaccination demonstrated the presence of vaccination-induced immune memory. These data supported the approval by the European Union for prophylaxis against EBOV disease in adults and children ≥1 year of age. Trial registration ClinicalTrials.gov NCT0256452
    corecore