612 research outputs found

    Convex Combinatorial Optimization

    Full text link
    We introduce the convex combinatorial optimization problem, a far reaching generalization of the standard linear combinatorial optimization problem. We show that it is strongly polynomial time solvable over any edge-guaranteed family, and discuss several applications

    Effects of atomic interactions on Quantum Accelerator Modes

    Get PDF
    We consider the influence of the inclusion of interatomic interactions on the delta-kicked accelerator model. Our analysis concerns in particular quantum accelerator modes, namely quantum ballistic transport near quantal resonances. The atomic interaction is modelled by a Gross-Pitaevskii cubic nonlinearity, and we address both attractive (focusing) and repulsive (defocusing) cases. The most remarkable effect is enhancement or damping of the accelerator modes, depending on the sign of the nonlinear parameter. We provide arguments showing that the effect persists beyond mean-field description, and lies within the experimentally accessible parameter range.Comment: 4 pages, 6 figure

    Relative systoles of relative-essential 2-complexes

    Full text link
    We prove a systolic inequality for the phi-relative 1-systole of a phi-essential 2-complex, where phi is a homomorphism from the fundamental group of the complex, to a finitely presented group G. Indeed we show that universally for any phi-essential Riemannian 2-complex, and any G, the area of X is bounded below by 1/8 of sys(X,phi)^2. Combining our results with a method of Larry Guth, we obtain new quantitative results for certain 3-manifolds: in particular for Sigma the Poincare homology sphere, we have sys(Sigma)^3 < 24 vol(Sigma).Comment: 20 pages, to appear in Algebraic and Geometric Topolog

    Neutron Stars with a Stable, Light Supersymmetric Baryon

    Get PDF
    If a light gluino exists, the lightest gluino-containing baryon, the \OSO, is a possible candidate for self-interacting dark matter. In this scenario, the simplest explanation for the observed ratio Ωdm/Ωb≈6−10\Omega_{dm}/\Omega_b \approx 6-10 is that mS0∌900m_{S^0} \sim 900\MeVcs; this is not at present excluded by particle physics. Such an \OSO could be present in neutron stars, with hyperon formation serving as an intermediate stage. We calculate equilibrium compositions and equation of state for high density matter with the \OSO, and find that for a wide range of parameters the properties of neutron stars with the \OSO are consistent with observations. In particular, the maximum mass of a nonrotating star is 1.7−1.8M⊙1.7-1.8 M_\odot, and the presence of the \OSO is helpful in reconciling observed cooling rates with hyperon formation.Comment: ApJL submitted, 4 pages, using emulateapj (very very minor changes to match published versio

    Bed-parallel slip : Identifying missing displacement in mass transport deposits

    Get PDF
    RW was supported by the Israel Science Foundation (ISF grant No. 868/17). SM acknowledges the Israel Science Foundation (ISF grant No. 1645/19). TL acknowledges the Israeli government GSI DS project 40706.Peer reviewedPostprin

    On Some Positivity Properties of the Interquark Potential in QCD

    Get PDF
    We prove that the Fourier transform of the exponential e^{-\b V(R)} of the {\bf static} interquark potential in QCD is positive. It has been shown by Eliott Lieb some time ago that this property allows in the same limit of static spin independent potential proving certain mass relation between baryons with different quark flavors.Comment: 6 pages, latex with one postscript figur

    Super-diffusion in optical realizations of Anderson localization

    Full text link
    We discuss the dynamics of particles in one dimension in potentials that are random both in space and in time. The results are applied to recent optics experiments on Anderson localization, in which the transverse spreading of a beam is suppressed by random fluctuations in the refractive index. If the refractive index fluctuates along the direction of the paraxial propagation of the beam, the localization is destroyed. We analyze this broken localization, in terms of the spectral decomposition of the potential. When the potential has a discrete spectrum, the spread is controlled by the overlap of Chirikov resonances in phase space. As the number of Fourier components is increased, the resonances merge into a continuum, which is described by a Fokker-Planck equation. We express the diffusion coefficient in terms of the spectral intensity of the potential. For a general class of potentials that are commonly used in optics, the solutions of the Fokker-Planck equation exhibit anomalous diffusion in phase space, implying that when Anderson localization is broken by temporal fluctuations of the potential, the result is transport at a rate similar to a ballistic one or even faster. For a class of potentials which arise in some existing realizations of Anderson localization atypical behavior is found.Comment: 11 pages, 2 figure

    Arnol'd Tongues and Quantum Accelerator Modes

    Full text link
    The stable periodic orbits of an area-preserving map on the 2-torus, which is formally a variant of the Standard Map, have been shown to explain the quantum accelerator modes that were discovered in experiments with laser-cooled atoms. We show that their parametric dependence exhibits Arnol'd-like tongues and perform a perturbative analysis of such structures. We thus explain the arithmetical organisation of the accelerator modes and discuss experimental implications thereof.Comment: 20 pages, 6 encapsulated postscript figure

    SubspaceNet: Deep Learning-Aided Subspace Methods for DoA Estimation

    Full text link
    Direction of arrival (DoA) estimation is a fundamental task in array processing. A popular family of DoA estimation algorithms are subspace methods, which operate by dividing the measurements into distinct signal and noise subspaces. Subspace methods, such as Multiple Signal Classification (MUSIC) and Root-MUSIC, rely on several restrictive assumptions, including narrowband non-coherent sources and fully calibrated arrays, and their performance is considerably degraded when these do not hold. In this work we propose SubspaceNet; a data-driven DoA estimator which learns how to divide the observations into distinguishable subspaces. This is achieved by utilizing a dedicated deep neural network to learn the empirical autocorrelation of the input, by training it as part of the Root-MUSIC method, leveraging the inherent differentiability of this specific DoA estimator, while removing the need to provide a ground-truth decomposable autocorrelation matrix. Once trained, the resulting SubspaceNet serves as a universal surrogate covariance estimator that can be applied in combination with any subspace-based DoA estimation method, allowing its successful application in challenging setups. SubspaceNet is shown to enable various DoA estimation algorithms to cope with coherent sources, wideband signals, low SNR, array mismatches, and limited snapshots, while preserving the interpretability and the suitability of classic subspace methods.Comment: Under review for publication in the IEE

    On High-Energy Behavior of Cross Sections in Theories with Large Extra Dimensions

    Get PDF
    We discuss the high-energy behavior of cross sections in theories with large extra dimensions and low-scale quantum gravity, addressing two particular issues: (i) the tension of the D-branes, and (ii) bounds on the cross section and their relation to approximations in the mode sum over Kaluza-Klein-graviton exchanges.Comment: 6 pages, late
    • 

    corecore