151 research outputs found

    Topographic Mapping of the Quantum Hall Liquid using a Few-Electron Bubble

    Full text link
    A scanning probe technique was used to obtain a high-resolution map of the random electrostatic potential inside the quantum Hall liquid. A sharp metal tip, scanned above a semiconductor surface, sensed charges in an embedded two-dimensional electron gas. Under quantum Hall effect conditions, applying a positive voltage to the tip locally enhanced the 2D electron density and created a ``bubble'' of electrons in an otherwise unoccupied Landau level. As the tip scanned along the sample surface, the bubble followed underneath. The tip sensed the motions of single electrons entering or leaving the bubble in response to changes in the local 2D electrostatic potential.Comment: 4 pages, 3 JPG figures, Revtex. For additional info and AVI movies, visit http://electron.mit.edu/st

    Anisotropic low-temperature piezoresistance in (311)A GaAs two-dimensional holes

    Full text link
    We report low-temperature resistance measurements in a modulation-doped, (311)A GaAs two-dimensional hole system as a function of applied in-plane strain. The data reveal a strong but anisotropic piezoresistance whose magnitude depends on the density as well as the direction along which the resistance is measured. At a density of 1.6×10111.6\times10^{11} cm−2^{-2} and for a strain of about 2×10−42\times10^{-4} applied along [011ˉ\bar{1}], e.g., the resistance measured along this direction changes by nearly a factor of two while the resistance change in the [2ˉ\bar{2}33] direction is less than 10% and has the opposite sign. Our accurate energy band calculations indicate a pronounced and anisotropic deformation of the heavy-hole dispersion with strain, qualitatively consistent with the experimental data. The extremely anisotropic magnitude of the piezoresistance, however, lacks a quantitative explanation.Comment: 4 pages. Submitted to Applied Physics Letter

    In-Plane Magnetodrag between Dilute Two-Dimensional Systems

    Full text link
    We performed in-plane magnetodrag measurements on dilute double layer two-dimensional hole systems, at in-plane magnetic fields that suppress the apparent metallic behavior, and to fields well above those required to fully spin polarize the system. When compared to the single layer magnetoresistance, the magnetodrag exhibits exactly the same qualitative behavior. In addition, we have found that the enhancement to the drag from the in-plane field exhibits a strong maximum when both layer densities are matched.Comment: 4 pages, 3 figures; minor corrections. Accepted in Phys. Rev. Let

    Transference of Transport Anisotropy to Composite Fermions

    Full text link
    When interacting two-dimensional electrons are placed in a large perpendicular magnetic field, to minimize their energy, they capture an even number of flux quanta and create new particles called composite fermions (CFs). These complex electron-flux-bound states offer an elegant explanation for the fractional quantum Hall effect. Furthermore, thanks to the flux attachment, the effective field vanishes at a half-filled Landau level and CFs exhibit Fermi-liquid-like properties, similar to their zero-field electron counterparts. However, being solely influenced by interactions, CFs should possess no memory whatever of the electron parameters. Here we address a fundamental question: Does an anisotropy of the electron effective mass and Fermi surface (FS) survive composite fermionization? We measure the resistance of CFs in AlAs quantum wells where electrons occupy an elliptical FS with large eccentricity and anisotropic effective mass. Similar to their electron counterparts, CFs also exhibit anisotropic transport, suggesting an anisotropy of CF effective mass and FS.Comment: 5 pages, 5 figure

    Binding energy of shallow donors in a quantum well in the presence of a tilted magnetic field

    Full text link
    We present results of variational calculations of the binding energy of a neutral donor in a quantum well in the presence of a magnetic field tilted relative to the QW plane. Assuming that the donor is located in the center of the QW, we perform calculations for parameters typical of a II-VI wide-gap semiconductor heterostructure, using as an example the case of a rectangular CdTe quantum well with CdMgTe barriers. We present the dependence of the binding energy of a neutral donor on the tilt angle and on the magnitude of the applied magnetic filed. As a key result, we show that measurement of the binding energy of a donor at two angles of the magnetic field with respect to the quantum well plane can be used to unambiguously determined the conduction band offset of the materials building up heterostructure.Comment: 6 pages, 5 figure

    Magnetotransport in wide parabolic PbTe quantum wells

    Full text link
    The 3D- and 2D- behaviour of wide parabolic PbTe single quantum wells, which consist of PbTe p-n-p-structures, are studied theoretically and experimentally. A simple model combines the 2D- subband levels and the 3D-Landau levels in order to calculate the density of states in a magnetic field perpendicular to the 2D plane. It is shown that at a channel width of about 300nm on can expect to observe 3D- and 2D-behaviour at the same time. Magnetotransport experiments in selectively contacted Hall bar samples are performed at temperatures down to T = 50 mK and at magnetic fields up to B = 17 T.Comment: postscript file including 2 figs, 4 pages, Paper presented at EP2DS-XI, Nottingham 199

    Observation of reentrant quantum Hall states in the lowest Landau level

    Full text link
    Measurements in very low disorder two-dimensional electrons confined to relatively wide GaAs quantum well samples with tunable density reveal reentrant ν=1\nu=1 integer quantum Hall states in the lowest Landau level near filling factors ν=4/5\nu=4/5 and 6/5. These states are not seen at low densities and become more prominent with increasing density and in wider wells. Our data suggest a close competition between different types of Wigner crystal states near these fillings. We also observe an intriguing disappearance and reemergence of the ν=4/5\nu=4/5 fractional quantum Hall effect with increasing density

    Strain-induced Fermi contour anisotropy of GaAs 2D holes

    Full text link
    We report measurements of magneto-resistance commensurability peaks, induced by a square array of anti-dots, in GaAs (311)A two-dimensional holes as a function of applied in-plane strain. The data directly probe the shapes of the Fermi contours of the two spin subbands that are split thanks to the spin-orbit interaction and strain. The experimental results are in quantitative agreement with the predictions of accurate energy band calculations, and reveal that the majority spin-subband has a severely distorted Fermi contour whose anisotropy can be tuned with strain.Comment: Accepted for publication in Phys. Rev. Let

    Effective mass suppression in a ferromagnetic two-dimensional electron liquid

    Full text link
    We present numerical calculations of the electron effective mass in an interacting, ferromagnetic, two-dimensional electron system. We consider quantum interaction effects associated with the charge-density fluctuation induced many-body vertex corrections. Our theory, which is free of adjustable parameters, reveals that the effective mass is suppressed (relative to its band value) in the strong coupling limit, in good agreement with the results of recent experimental measurements.Comment: 5 pages, 4 figures, To appear in Phys. Rev.
    • …
    corecore