138 research outputs found

    Bilateral Assessment of Functional Tasks for Robot-assisted Therapy Applications

    Get PDF
    This article presents a novel evaluation system along with methods to evaluate bilateral coordination of arm function on activities of daily living tasks before and after robot-assisted therapy. An affordable bilateral assessment system (BiAS) consisting of two mini-passive measuring units modeled as three degree of freedom robots is described. The process for evaluating functional tasks using the BiAS is presented and we demonstrate its ability to measure wrist kinematic trajectories. Three metrics, phase difference, movement overlap, and task completion time, are used to evaluate the BiAS system on a bilateral symmetric (bi-drink) and a bilateral asymmetric (bi-pour) functional task. Wrist position and velocity trajectories are evaluated using these metrics to provide insight into temporal and spatial bilateral deficits after stroke. The BiAS system quantified movements of the wrists during functional tasks and detected differences in impaired and unimpaired arm movements. Case studies showed that stroke patients compared to healthy subjects move slower and are less likely to use their arm simultaneously even when the functional task requires simultaneous movement. After robot-assisted therapy, interlimb coordination spatial deficits moved toward normal coordination on functional tasks

    Abnormal Reorganization of Functional Cortical Small-World Networks in Focal Hand Dystonia

    Get PDF
    We investigated the large-scale functional cortical connectivity network in focal hand dystonia (FHD) patients using graph theoretic measures to assess efficiency. High-resolution EEGs were recorded in 15 FHD patients and 15 healthy volunteers at rest and during a simple sequential finger tapping task. Mutual information (MI) values of wavelet coefficients were estimated to create an association matrix between EEG electrodes, and to produce a series of adjacency matrices or graphs, G, by thresholding with network cost. Efficiency measures of small-world networks were assessed. As a result, we found that FHD patients have economical small-world properties in their brain functional networks in the alpha and beta bands. During a motor task, in the beta band network, FHD patients have decreased efficiency of small-world networks, whereas healthy volunteers increase efficiency. Reduced efficient beta band network in FHD patients during the task was consistently observed in global efficiency, cost-efficiency, and maximum cost-efficiency. This suggests that the beta band functional cortical network of FHD patients is reorganized even during a task that does not induce dystonic symptoms, representing a loss of long-range communication and abnormal functional integration in large-scale brain functional cortical networks. Moreover, negative correlations between efficiency measures and duration of disease were found, indicating that the longer duration of disease, the less efficient the beta band network in FHD patients. In regional efficiency analysis, FHD patients at rest have high regional efficiency at supplementary motor cortex (SMA) compared with healthy volunteers; however, it is diminished during the motor task, possibly reflecting abnormal inhibition in FHD patients. The present study provides the first evidence with graph theory for abnormal reconfiguration of brain functional networks in FHD during motor task

    Synchrony of hand-foot coupled movements: is it attained by mutual feedback entrainment or by independent linkage of each limb to a common rhythm generator?

    Get PDF
    BACKGROUND: Synchrony of coupled oscillations of ipsilateral hand and foot may be achieved by controlling the interlimb phase difference through a crossed kinaesthetic feedback between the two limbs, or by an independent linkage of each limb cycle to a common clock signal. These alternative models may be experimentally challenged by comparing the behaviour of the two limbs when they oscillate following an external time giver, either alone or coupled together. RESULTS: Ten subjects oscillated their right hand and foot both alone and coupled (iso- or antidirectionally), paced by a metronome. Wrist and ankle angular position and Electromyograms (EMG) from the respective flexor and extensor muscles were recorded. Three phase delays were measured: i) the clk-mov delay, between the clock (metronome beat) and the oscillation peak; ii) the neur (neural) delay, between the clock and the motoneurone excitatory input, as inferred from the EMG onset; and iii) the mech (mechanical) delay between the EMG onset and the corresponding point of the limb oscillation. During uncoupled oscillations (0.4 Hz to 3.0 Hz), the mech delay increased from -7° to -111° (hand) and from -4° to -83° (foot). In contrast, the clk-mov delay remained constant and close to zero in either limb since a progressive advance of the motoneurone activation on the pacing beat (neur advance) compensated for the increasing mech delay. Adding an inertial load to either extremity induced a frequency dependent increase of the limb mechanical delay that could not be completely compensated by the increase of the neural phase advance, resulting in a frequency dependent increment of clk-mov delay of the hampered limb. When limb oscillations were iso- or antidirectionally coupled, either in the loaded or unloaded condition, the three delays did not significantly change with respect to values measured when limbs were moved separately. CONCLUSION: The absence of any significant effect of limb coupling on the measured delays suggests that during hand-foot oscillations, both iso- and antidirectionally coupled, each limb is synchronised to the common rhythm generator by a "private" position control, with no need for a crossed feedback interaction between limbs

    Motor-Cortical Interaction in Gilles de la Tourette Syndrome

    Get PDF
    BACKGROUND: In Gilles de la Tourette syndrome (GTS) increased activation of the primary motor cortex (M1) before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG). Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA) was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS

    Corpus Callosum Morphology in Capuchin Monkeys Is Influenced by Sex and Handedness

    Get PDF
    Sex differences have been reported in both overall corpus callosum area and its regional subdivisions in humans. Some have suggested this reflects a unique adaptation in humans, as similar sex differences in corpus callosum morphology have not been reported in any other species of primate examined to date. Furthermore, an association between various measurements of corpus callosum morphology and handedness has been found in humans and chimpanzees. In the current study, we report measurements of corpus callosum cross-sectional area from midsagittal MR images collected in vivo from 14 adult capuchin monkeys, 9 of which were also characterized for hand preference on a coordinated bimanual task. Adult females were found to have a significantly larger corpus callosum: brain volume ratio, rostral body, posterior midbody, isthmus, and splenium than adult males. Left-handed individuals had a larger relative overall corpus callosum area than did right-handed individuals. Additionally, a significant sex and handedness interaction was found for anterior midbody, with right-handed males having a significantly smaller area than right-handed females. These results suggest that sex and handedness influences on corpus callosum morphology are not restricted to Homo sapiens

    Color perception deficits in co-existing attention-deficit/hyperactivity disorder and chronic tic disorders

    Get PDF
    Preliminary findings suggest that color perception, particularly of blue-yellow stimuli, is impaired in attention-deficit/hyperactivity disorder (ADHD) as well as in chronic tic disorders (CTD). However, these findings have been not replicated and it is unclear what these deficits mean for the comorbidity of ADHD + CTD. Four groups (ADHD, CTD, ADHD + CTD, controls) of children with similar age, IQ and gender distribution were investigated with the Farnsworth-Munsell 100 Hue Test (FMT) and the Stroop-Color-Word Task using a factorial design. Color perception deficits, as indexed by the FMT, were found for both main factors (ADHD and CTD), but there were no interaction effects. A preponderance of deficits on the blue-yellow compared to the red-green axis was detected for ADHD. In the Stroop task only the 'pure' ADHD group showed impairments in interference control and other parameters of Stroop performance. No significant correlations between any FMT parameter and color naming in the Stroop task were found. Basic color perception deficits in both ADHD and CTD could be found. Beyond that, it could be shown that these deficits are additive in the case of comorbidity (ADHD + CTD). Performance deficits on the Stroop task were present only in the 'pure' ADHD group. Hence, the latter may be compensated in the comorbid group by good prefrontal capabilities of CTD. The influence of color perception deficits on Stroop task performance might be negligible. © 2007 Springer-Verlag

    An evaluation of the effectiveness of PROMPT therapy in improving speech production accuracy in six children with cerebral palsy

    Get PDF
    This study evaluates perceptual changes in speech production accuracy in six children (3 – 11 years) with moderate-to-severe speech impairment associated with cerebral palsy before, during, and after participation in a motor-speech intervention program (Prompts for Restructuring Oral Muscular Phonetic Targets). An A1BCA2 single subject research design was implemented. Subsequent to the baseline phase (phase A1), phase B targeted each participant’s first intervention priority on the PROMPT motor-speech hierarchy. Phase C then targeted one level higher. Weekly speech probes were administered, containing trained and untrained words at the two levels of intervention, plus an additional level that served as a control goal. The speech probes were analysed for motor-speech-movement-parameters and perceptual accuracy. Analysis of the speech probe data showed all participants recorded a statistically significant change. Between phases A1 – B and B – C 6/6 and 4/6participants, respectively, recorded a statistically significant increase in performance level on the motor speech movement patterns targeted during the training of that intervention. The preliminary data presented in this study make a contribution to providing evidence that supports the use of a treatment approach aligned with dynamic systems theory to improve the motor-speech movement patterns and speech production accuracy in children with cerebral palsy

    Comparing unilateral and bilateral upper limb training: The ULTRA-stroke program design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 80% of all stroke survivors have an upper limb paresis immediately after stroke, only about a third of whom (30 to 40%) regain some dexterity within six months following conventional treatment programs. Of late, however, two recently developed interventions - constraint-induced movement therapy (CIMT) and bilateral arm training with rhythmic auditory cueing (BATRAC) - have shown promising results in the treatment of upper limb paresis in chronic stroke patients. The ULTRA-stroke (acronym for Upper Limb TRaining After stroke) program was conceived to assess the effectiveness of these interventions in subacute stroke patients and to examine how the observed changes in sensori-motor functioning relate to changes in stroke recovery mechanisms associated with peripheral stiffness, interlimb interactions, and cortical inter- and intrahemispheric networks. The present paper describes the design of this single-blinded randomized clinical trial (RCT), which has recently started and will take several years to complete.</p> <p>Methods/Design</p> <p>Sixty patients with a first ever stroke will be recruited. Patients will be stratified in terms of their remaining motor ability at the distal part of the arm (i.e., wrist and finger movements) and randomized over three intervention groups receiving modified CIMT, modified BATRAC, or an equally intensive (i.e., dose-matched) conventional treatment program for 6 weeks. Primary outcome variable is the score on the Action Research Arm test (ARAT), which will be assessed before, directly after, and 6 weeks after the intervention. During those test sessions all patients will also undergo measurements aimed at investigating the associated recovery mechanisms using haptic robots and magneto-encephalography (MEG).</p> <p>Discussion</p> <p>ULTRA-stroke is a 3-year translational research program which aims (1) to assess the relative effectiveness of the three interventions, on a group level but also as a function of patient characteristics, and (2) to delineate the functional and neurophysiological changes that are induced by those interventions.</p> <p>The outcome on the ARAT together with information about changes in the associated mechanisms will provide a better understanding of how specific therapies influence neurobiological changes, and which post-stroke conditions lend themselves to specific treatments.</p> <p>Trial Registration</p> <p>The ULTRA-stroke program is registered at the Netherlands Trial Register (NTR, <url>http://www.trialregister.nl</url>, number NTR1665).</p

    Excitability of the Motor Cortex Ipsilateral to the Moving Body Side Depends on Spatio-Temporal Task Complexity and Hemispheric Specialization

    Get PDF
    Unilateral movements are mainly controlled by the contralateral hemisphere, even though the primary motor cortex ipsilateral (M1ipsi) to the moving body side can undergo task-related changes of activity as well. Here we used transcranial magnetic stimulation (TMS) to investigate whether representations of the wrist flexor (FCR) and extensor (ECR) in M1ipsi would be modulated when unilateral rhythmical wrist movements were executed in isolation or in the context of a simple or difficult hand-foot coordination pattern, and whether this modulation would differ for the left versus right hemisphere. We found that M1ipsi facilitation of the resting ECR and FCR mirrored the activation of the moving wrist such that facilitation was higher when the homologous muscle was activated during the cyclical movement. We showed that this ipsilateral facilitation increased significantly when the wrist movements were performed in the context of demanding hand-foot coordination tasks whereas foot movements alone influenced the hand representation of M1ipsi only slightly. Our data revealed a clear hemispheric asymmetry such that MEP responses were significantly larger when elicited in the left M1ipsi than in the right. In experiment 2, we tested whether the modulations of M1ipsi facilitation, caused by performing different coordination tasks with the left versus right body sides, could be explained by changes in short intracortical inhibition (SICI). We found that SICI was increasingly reduced for a complex coordination pattern as compared to rest, but only in the right M1ipsi. We argue that our results might reflect the stronger involvement of the left versus right hemisphere in performing demanding motor tasks

    Attentional Performance in Children and Adolescents with Tic Disorder and Co-Occurring Attention-Deficit/Hyperactivity Disorder: New Insights from a 2 × 2 Factorial Design Study

    Get PDF
    The aim of the present study was to investigate the effect of both tic disorder (TD) and attention-deficit/hyperactivity disorder (ADHD) on attentional functions. N = 96 children and adolescents participated in the study, including n = 21 subjects with TD, n = 23 subjects with ADHD, n = 25 subjects with TD+ADHD, and n = 27 controls. Attentional performance was tested based on four computerized attention tasks (sustained attention, divided attention, go/nogo and set shifting). The effect of TD as well as ADHD on attentional performance was tested using a 2 × 2 factorial approach. A diagnosis of TD had no negative impact on attentional functions but was associated with improved performance in the set shifting task. By contrast, regardless of a diagnosis of TD, subjects with ADHD were found to perform worse in the sustained attention, divided attention and go/nogo task. No interaction effect between the factors TD and ADHD was revealed for any of the attention measures. Our results add to findings from other areas of research, showing that in subjects with TD and ADHD, ADHD psychopathology is often the main source of impairment, whereas a diagnosis of TD has little or no impact on neuropsychological performance in most cases and even seems to be associated with adaptive mechanisms
    corecore