4 research outputs found

    Active afforestation of drained peatlands is not a viable option under the EU Nature Restoration Law

    Get PDF
    The EU Nature Restoration Law (NRL) is critical in restoring degraded ecosystems. However, active afforestation of degraded peatlands has been suggested by some as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry and its limitations, uncertainties and evidence gaps. Based on this discussion we conclude: Afforestation of drained peatlands, while maintaining their drained state, is not equivalent to ecosystem restoration. This approach will not restore the peatland ecosystem's flora, fauna, and functions. There is insufficient evidence to support the long-term climate change mitigation benefits of active afforestation of drained peatlands. Most studies only focus on the short-term gains in standing biomass and rarely explore the full life cycle emissions associated with afforestation of drained peatlands. Thus, it is unclear whether the CO2 sequestration of a forest on drained peatland can offset the carbon loss from the peat over the long term. In some ecosystems, such as abandoned or certain cutaway peatlands, afforestation may provide short-term benefits for climate change mitigation compared to taking no action. However, this approach violates the concept of sustainability by sacrificing the most space-effective carbon store of the terrestrial biosphere, the long-term peat store, for a shorter-term, less space-effective, and more vulnerable carbon store, namely tree biomass. Consequently, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. To restore degraded peatlands, hydrological conditions must first be improved, primarily through rewetting

    Assessment and Spatial Planning for Peatland Conservation and Restoration: Europe’s Trans-Border Neman River Basin as a Case Study

    No full text
    Peatlands are the “kidneys” of river basins. However, intensification of agriculture and forestry in Europe has resulted in the degradation of peatlands and their biodiversity (i.e., species, habitats and processes in ecosystems), thus impairing water retention, nutrient filtration, and carbon capture. Restoration of peatlands requires assessment of patterns and processes, and spatial planning. To support strategic planning of protection, management, and restoration of peatlands, we assessed the conservation status of three peatland types within the trans-border Neman River basin. First, we compiled a spatial peatland database for the two EU and two non-EU countries involved. Second, we performed quantitative and qualitative gap analyses of fens, transitional mires, and raised bogs at national and sub-basin levels. Third, we identified priority areas for local peatland restoration using a local hotspot analysis. Nationally, the gap analysis showed that the protection of peatlands meets the Convention of Biological Diversity’s quantitative target of 17%. However, qualitative targets like representation and peatland qualities were not met in some regional sub-basins. This stresses that restoration of peatlands, especially fens, is required. This study provides an assessment methodology to support sub-basin-level spatial conservation planning that considers both quantitative and qualitative peatland properties. Finally, we highlight the need for developing and validating evidence-based performance targets for peatland patterns and processes and call for peatland restoration guided by social-ecological research and inter-sectoral collaborative governance

    The diverse roles of DNA methylation in mammalian development and disease

    No full text
    corecore