75 research outputs found
Robot Impedance Control and Passivity Analysis with Inner Torque and Velocity Feedback Loops
Impedance control is a well-established technique to control interaction
forces in robotics. However, real implementations of impedance control with an
inner loop may suffer from several limitations. Although common practice in
designing nested control systems is to maximize the bandwidth of the inner loop
to improve tracking performance, it may not be the most suitable approach when
a certain range of impedance parameters has to be rendered. In particular, it
turns out that the viable range of stable stiffness and damping values can be
strongly affected by the bandwidth of the inner control loops (e.g. a torque
loop) as well as by the filtering and sampling frequency. This paper provides
an extensive analysis on how these aspects influence the stability region of
impedance parameters as well as the passivity of the system. This will be
supported by both simulations and experimental data. Moreover, a methodology
for designing joint impedance controllers based on an inner torque loop and a
positive velocity feedback loop will be presented. The goal of the velocity
feedback is to increase (given the constraints to preserve stability) the
bandwidth of the torque loop without the need of a complex controller.Comment: 14 pages in Control Theory and Technology (2016
Fast and Continuous Foothold Adaptation for Dynamic Locomotion through CNNs
Legged robots can outperform wheeled machines for most navigation tasks
across unknown and rough terrains. For such tasks, visual feedback is a
fundamental asset to provide robots with terrain-awareness. However, robust
dynamic locomotion on difficult terrains with real-time performance guarantees
remains a challenge. We present here a real-time, dynamic foothold adaptation
strategy based on visual feedback. Our method adjusts the landing position of
the feet in a fully reactive manner, using only on-board computers and sensors.
The correction is computed and executed continuously along the swing phase
trajectory of each leg. To efficiently adapt the landing position, we implement
a self-supervised foothold classifier based on a Convolutional Neural Network
(CNN). Our method results in an up to 200 times faster computation with respect
to the full-blown heuristics. Our goal is to react to visual stimuli from the
environment, bridging the gap between blind reactive locomotion and purely
vision-based planning strategies. We assess the performance of our method on
the dynamic quadruped robot HyQ, executing static and dynamic gaits (at speeds
up to 0.5 m/s) in both simulated and real scenarios; the benefit of safe
foothold adaptation is clearly demonstrated by the overall robot behavior.Comment: 9 pages, 11 figures. Accepted to RA-L + ICRA 2019, January 201
Kinematically-Decoupled Impedance Control for Fast Object Visual Servoing and Grasping on Quadruped Manipulators
We propose a control pipeline for SAG (Searching, Approaching, and Grasping)
of objects, based on a decoupled arm kinematic chain and impedance control,
which integrates image-based visual servoing (IBVS). The kinematic decoupling
allows for fast end-effector motions and recovery that leads to robust visual
servoing. The whole approach and pipeline can be generalized for any mobile
platform (wheeled or tracked vehicles), but is most suitable for dynamically
moving quadruped manipulators thanks to their reactivity against disturbances.
The compliance of the impedance controller makes the robot safer for
interactions with humans and the environment. We demonstrate the performance
and robustness of the proposed approach with various experiments on our 140 kg
HyQReal quadruped robot equipped with a 7-DoF manipulator arm. The experiments
consider dynamic locomotion, tracking under external disturbances, and fast
motions of the target object.Comment: Accepted as contributed paper at 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2023
On the Hardware Feasibility of Nonlinear Trajectory Optimization for Legged Locomotion based on a Simplified Dynamics
Simplified models are useful to increase the computational efficiency of a motion planning algorithm, but their lack of accuracy have to be managed. We propose two feasibility constraints to be included in a Single Rigid Body Dynamics-based trajectory optimizer in order to obtain robust motions in challenging terrain. The first one finds an approximate relationship between joint-torque limits and admissible contact forces, without requiring the joint positions. The second one proposes a leg model to prevent leg collision with the environment. Such constraints have been included in a simplified nonlinear non-convex trajectory optimization problem. We demonstrate the feasibility of the resulting motion plans both in simulation and on the Hydraulically actuated Quadruped (HyQ) robot, considering experiments on an irregular terrain
Motion Planning for Quadrupedal Locomotion:Coupled Planning, Terrain Mapping and Whole-Body Control
Planning whole-body motions while taking into account the terrain conditions is a challenging problem for legged robots since the terrain model might produce many local minima. Our coupled planning method uses stochastic and derivatives-free search to plan both foothold locations and horizontal motions due to the local minima produced by the terrain model. It jointly optimizes body motion, step duration and foothold selection, and it models the terrain as a cost-map. Due to the novel attitude planning method, the horizontal motion plans can be applied to various terrain conditions. The attitude planner ensures the robot stability by imposing limits to the angular acceleration. Our whole-body controller tracks compliantly trunk motions while avoiding slippage, as well as kinematic and torque limits. Despite the use of a simplified model, which is restricted to flat terrain, our approach shows remarkable capability to deal with a wide range of noncoplanar terrains. The results are validated by experimental trials and comparative evaluations in a series of terrains of progressively increasing complexity
Trajectory and Foothold Optimization using Low-Dimensional Models for Rough Terrain Locomotion
We present a trajectory optimization framework for legged locomotion on rough terrain. We jointly optimize the center of mass motion and the foothold locations, while considering terrain conditions. We use a terrain costmap to quantify the desirability of a foothold location. We increase the gait's adaptability to the terrain by optimizing the step phase duration and modulating the trunk attitude, resulting in motions with guaranteed stability. We show that the combination of parametric models, stochastic-based exploration and receding horizon planning allows us to handle the many local minima associated with different terrain conditions and walking patterns. This combination delivers robust motion plans without the need for warm-starting. Moreover, we use soft-constraints to allow for increased flexibility when searching in the cost landscape of our problem. We showcase the performance of our trajectory optimization framework on multiple terrain conditions and validate our method in realistic simulation scenarios and experimental trials on a hydraulic, torque controlled quadruped robot
- …