113 research outputs found

    Leukocyte Counts and Ratios Are Predictive of Stroke Outcome and Hemorrhagic Complications Independently of Infections.

    Get PDF
    Background: Ischemic stroke patients show alterations in peripheral leukocyte counts that may result from the sterile inflammation response as well as the occurrence of early infections. We here aimed to determine whether alterations of circulating leukocytes in acute ischemic stroke are associated with long-term functional outcome and hemorrhagic complications, independently of the occurrence of infections. Methods: Blood laboratory values of patients with acute ischemic stroke, presenting within 4.5 h from symptom onset, were collected. Leukocyte subsets were analyzed in relation to 3-month functional outcome, mortality, and parenchymal hemorrhagic transformation (PH). A multivariable logistic regression analysis, considering the occurrence of early post-stroke infections, was performed for each outcome measure. Results: Five-hundred-ten patients were included in the study. Independently of infections, good functional outcome was associated with a lower neutrophil to lymphocyte ratio (NL-R, OR 0.906 [95% CI 0.822-0.998]), a higher lymphocyte count (OR 1.547 [95% CI 1.051-2.277]), a higher eosinophil count (OR 1.027 [95% CI 1.007-1.048]), and a higher eosinophil to leukocyte ratio (EoLeu-R, OR 1.240 [95% CI 1.071-1.436]) at admission. Death within 3 months was associated with higher NL-R (OR 1.103 [95% CI 1.032-1.179]) as well as with lower eosinophil counts (OR 0.909 [95% CI 0.827-0.999]). Patients developing parenchymal hemorrhagic transformation had higher neutrophil counts (OR 1.420 [95% CI 1.197-1.684]) as well as a higher NL-R (OR 1.192 [95% IC 1.088-1.305]). Conclusion: Leukocyte subtype profiles in the acute phase of ischemic stroke represent a predictor of outcome independently of infections. Stroke-evoked sterile inflammation is a pathophysiological relevant mechanism that deserves further investigation

    Post-ischaemic silencing of p66Shc reduces ischaemia/reperfusion brain injury and its expression correlates to clinical outcome in stroke

    Get PDF
    In light of the limited repertoire of therapeutical options available for the treatment of ischaemic stroke, the identification of novel potential targets is vital; in this respect, the present study demonstrates that the adaptor protein p66Shc holds this potential as an adjunct therapy to thrombolysis. Post-ischaemic silencing of p66Shc protein yielded beneficial effects in a mouse model of I/R brain injury underlying an interesting translational perspective for this target protein. Further, in proof-of-principle clinical experiments using PBMs, we demonstrate that p66Shc gene expression is transiently increased and that its levels correlate to short-term outcome in ischaemic stroke patients. Although these latter experiments are not directly relevant to the experiments performed in mice and in human endothelial cells, they provide novel important information about p66Shc regulation in stroke patients and set the basis for further investigations aimed at assessing the potential for p66Shc to become a novel therapeutic target as an adjunct of thrombolysis for the management of acute ischaemic strok

    Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies.

    Get PDF
    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that primarily affects the lining of the synovial joints and is associated with progressive disability, premature death, and socioeconomic burdens. A better understanding of how the pathological mechanisms drive the deterioration of RA progress in individuals is urgently required in order to develop therapies that will effectively treat patients at each stage of the disease progress. Here we dissect the etiology and pathology at specific stages: (i) triggering, (ii) maturation, (iii) targeting, and (iv) fulminant stage, concomitant with hyperplastic synovium, cartilage damage, bone erosion, and systemic consequences. Modern pharmacologic therapies (including conventional, biological, and novel potential small molecule disease-modifying anti-rheumatic drugs) remain the mainstay of RA treatment and there has been significant progress toward achieving disease remission without joint deformity. Despite this, a significant proportion of RA patients do not effectively respond to the current therapies and thus new drugs are urgently required. This review discusses recent advances of our  understanding of RA pathogenesis, disease modifying drugs, and provides perspectives on next generation therapeutics for RA

    Polarographisehe Bestimmungen

    No full text

    Die polarographische Analyse magnesiumreicher Legierungen

    No full text

    Libri Ricevuti e Recensioni

    No full text
    corecore