7 research outputs found

    Toksični učinci patulina na timus mužjaka štakora u razvoju

    Get PDF
    Patulin is a mycotoxin produced by several Penicillium, Aspergillus, and Byssachlamys species growing on food products. In this study, we investigated the effects of patulin on the thymus of growing male rats aged fi ve to six weeks. The rats were receiving it orally at a dose of 0.1 mg kg-1 bw a day for either 60 or 90 days. At the end of the experiment, the thymus was examined for histopathology by light microscopy and for epidermal growth factor (EGF) and its receptor (EGFR) by immunolocalisation. For morphometry we used the Bs200prop program to analyse images obtained with the Olympus BX51 light microscope. Cell ultrastructure was studied by electron microscopy. In rats treated with patulin, the thymus showed haemorrhage, plasma cell hyperplasia, a dilation and fi brosis in the cortex, enlarged interstitial tissue between the thymic lobules, enlarged fat tissue, thinning of the cortex, and blurring of the cortico-medullary demarcation. Electron microscopy showed signs of cell destruction, abnormalities of the nucleus and organelles, and loss of mitochondrial cristae. However, no differences were observed in thymus EGF and EGFR immunoreactivity between treated and control rats.Patulin je mikotoksin koji proizvode plijesni sojeva Penicillium, Aspergillus i Byssachlamys na različitim prehrambenim proizvodima kao podlozi. Učinke patulina istražili smo na timusu mužjaka štakora u razvoju (dobi 5 do 6 tjedana). Mikotoksin je životinjama davan per os u dnevnoj dozi 0,1 mg kg-1 tj. t. 60 odnosno 90 dana. Na kraju pokusa štakori su žrtvovani, timus je podvrgnut histološkim analizama s pomoću svjetlosne mikroskopije, a imunocitokemijskim je metodama istražena stanična lokalizacija epidermalnog faktora rasta (EGF) i njegova receptora (EGFR). Morfometrijska analiza provedena je s pomoću računalnog programa Bs200prop povezanog u sustav sa svjetlosnim mikroskopom Olympus BX51. Elektronskomikroskopski je istražena ultrastruktura stanica timusa. Utvrđeno je da patulin izaziva krvaranja u timusu, hiperplaziju plazma-stanica, dilataciju i fi brozu u kortikalnoj regiji timusa, širenje intersticijskog tkiva između režnjeva timusa, povećanje masnih stanica, smanjenje debljine kore timusa te nestanak kortiko-medularne demarkacije. Elektronskomikroskopski u tkivu timusa štakora tretiranih patulinom uočeni su znakovi raspadanja stanica, abnormalnosti jezgre i organela te gubitak mitohondrijskih krista. Unatoč navedenomu, na presjecima tkiva kontrolnih štakora i štakora tretiranih patulinom nismo utvrdili razlike u imunoreaktivnosti EGF i EGFR, što bi trebalo dodatno istražiti osjetljivijim molekularnim metodama

    An Electron Paramagnetic Resonance (Epr) Spin Labeling Study In Ht-29 Colon Adenocarcinoma Cells After Hypericin-Mediated Photodynamic Therapy

    No full text
    Background Colon cancer affects 1.23 million people worldwide and is the third most common malignant disease in men and the second in women. The only curative treatment is surgical resection, but a significant number of patients develop local recurrence or distant metastases. One of the alternative treatment methods for colon cancer is photodynamic therapy (PDT). In recent years, hypericin (HYP) derived from Hypericum perforatum has been suggested as a strong candidate photosensitizer for PDT. Our interest is focused on the biophysical changes in colon cancer cells in relation to HYP-mediated PDT. Results In this study, HYP-mediated PDT at 0.04, 0.08 or 0.15 μM HYP concentrations was performed in HT-29 colon adenocarcinoma cells and the Electron Paramagnetic Resonance (EPR) spectra of the spin labeled cells were obtained. Plasma membranes are already heterogeneous structures; the presence of cancer cells increased the heterogeneity and also fluidity of the plasma membranes. Therefore, the obtained spectra were evaluated by EPRSIMC program, which provides the calculation of heterogeneous structures up to four spectral components with different fluidity characteristics. Generally, two motional patterns were obtained from calculations and the number of them increased at the highest concentration. As the order parameters of the most populated components compared, an increase was observed depending on the HYP concentration. However, because of the heterogeneous structure of membrane, the order parameters of the less populated components did not exhibit a regular distribution. Conclusion After HYP-mediated PDT, concentration dependent changes were observed in the domain parameters indicating an increase in the HYP accumulation.PubMedWoSScopu

    Alterations in Dysadherin Expression and F-Actin Reorganization: A Possible Mechanism of Hypericin-Mediated Photodynamic Therapy In Colon Adenocarcinoma Cells

    No full text
    Dysadherin is a recently found anti-adhesion molecule, therefore detection and down regulation of its expression is promising in cancer treatment. The up-regulation of dysadherin contributes to colon cancer recurrence and metastasis. Dysadherin also has connections with cytoskeletal proteins and it can cause alterations in the organisation of filamentous actin (F-actin) in metastatic cancers. In this study, hypericin (HYP)-mediated photodynamic therapy (PDT) was performed in two different grade colon adenocarcinoma cell lines HT-29 (Grade I) and Caco-2 (Grade II). Cells were treated with 0.04, 0.08 or 0.15 mu M HYP concentrations and irradiated with (4 J/cm(2)) fluorescent lamps. The effects of HYP was examined 16 and 24 h after the activation. We investigated for the first time the effect of HYP-mediated PDT on the expression of dysadherin and F-actin organisation. According to the results, HYP mediated PDT caused a decrease in gene expression and immunofluorescence staining of dysadherin and an increase in actin stress fibers and actin aggregates in HT-29 and Caco-2 cell lines. Besides, cytotoxicity, number of floating cells and apoptotic index changed depending on the cell type, HYP concentration and incubation time. We have demonstrated for the first time that dysadherin and F-actin could be target molecules for HYP-mediated PDT in HT-29 and Caco-2 colon cancer cell lines.Wo
    corecore