495 research outputs found

    Clinical MR in the year 2010

    Get PDF
    This article tries to look into the future of magnetic resonance imaging. Deducing from six rules, it pinpoints the most likely developments of this imaging techniqu

    MR perfusion imaging: correlation with PET and quantitative angiography

    Get PDF
    4. Conclusions: The presented MR approach reliably identifies patients with anatomically and hemodynamically signiticant coronary artery stenoses. This is due to the fact, that the pulse sequence used produces a substantial change in signal intensity in the perfused versus poorly perfused myocardial regions. Analysis of upslope in this setting rather than of other parameters provides a very sensitive and specific measure of myocardial ischemia. As upslope is a semiquantitative measure of absolute perfusion, even patients with triple vessel disease may be evaluated using this method. This is not the case when using conventional nuclear techniques. Furthermore, the spatial resolution of the MR images permits one to resolve the subendocardial layers of the myocardium, which thus can be evaluated separately from the entire wall. Again, this is not possible using nuclear cardiology perfusion imaging. The robustness of this MR perfusion imaging approach and the fact, that most of the heart can be covered may qualify for its clinical application in the management of coronary artery diseas

    Sub-matrix updates for the Continuous-Time Auxiliary Field algorithm

    Full text link
    We present a sub-matrix update algorithm for the continuous-time auxiliary field method that allows the simulation of large lattice and impurity problems. The algorithm takes optimal advantage of modern CPU architectures by consistently using matrix instead of vector operations, resulting in a speedup of a factor of ≈8\approx 8 and thereby allowing access to larger systems and lower temperature. We illustrate the power of our algorithm at the example of a cluster dynamical mean field simulation of the N\'{e}el transition in the three-dimensional Hubbard model, where we show momentum dependent self-energies for clusters with up to 100 sites

    Clinical MR in the year 2010

    Full text link
    This article tries to look into the future of magnetic resonance imaging. Deducing from six rules, it pinpoints the most likely developments of this imaging techniqu

    PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients

    Get PDF
    The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140keV must be transformed into linear attenuation coefficients at the PET energy of 511keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511keV (0.096cm-1), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096cm-1 in the transformation by the linear attenuation coefficient of 0.093cm-1 obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissu

    Study of the One- and Two-Band Models for Colossal Magnetoresistive Manganites Using the Truncated Polynomial Expansion Method

    Full text link
    Considerable progress has been recently made in the theoretical understanding of the colossal magnetoresistance (CMR) effect in manganites. The analysis of simple models with two competing states and a resistor network approximation to calculate conductances has confirmed that CMR effects can be theoretically reproduced using non-uniform clustered states. In this paper, the recently proposed Truncated Polynomial Expansion method (TPEM) for spin-fermion systems is tested using the double-exchange one-band, with finite Hund coupling JHJ_{\rm H}, and two-band, with infinite JHJ_{\rm H}, models. Two dimensional lattices as large as 48×\times48 are studied, far larger than those that can be handled with standard exact diagonalization (DIAG) techniques for the fermionic sector. The clean limit (i.e. without quenched disorder) is here analyzed in detail. Phase diagrams are obtained, showing first-order transitions separating ferromagnetic metallic from insulating states. A huge magnetoresistance is found at low temperatures by including small magnetic fields, in excellent agreement with experiments. However, at temperatures above the Curie transition the effect is much smaller confirming that the standard finite-temperature CMR phenomenon cannot be understood using homogeneous states. By comparing results between the two methods, TPEM and DIAG, on small lattices, and by analyzing the systematic behavior with increasing cluster sizes, it is concluded that the TPEM is accurate to handle realistic manganite models on large systems. Our results pave the way to a frontal computational attack of the colossal magnetoresistance phenomenon using double-exchange like models, on large clusters, and including quenched disorder.Comment: 14 pages, 17 figure

    Discrimination and anatomical mapping of PET-positive lesions: comparison of CT attenuation-corrected PET images with coregistered MR and CT images in the abdomen

    Get PDF
    Purpose: PET/MR has the potential to become a powerful tool in clinical oncological imaging. The purpose of this prospective study was to evaluate the performance of a single T1-weighted (T1w) fat-suppressed unenhanced MR pulse sequence of the abdomen in comparison with unenhanced low-dose CT images to characterize PET-positive lesions. Methods: A total of 100 oncological patients underwent sequential whole-body 18F-FDG PET with CT-based attenuation correction (AC), 40mAs low-dose CT and two-point Dixon-based T1w 3D MRI of the abdomen in a trimodality PET/CT-MR system. PET-positive lesions were assessed by CT and MRI with regard to their anatomical location, conspicuity and additional relevant information for characterization. Results: From among 66 patients with at least one PET-positive lesion, 147 lesions were evaluated. No significant difference between MRI and CT was found regarding anatomical lesion localization. The MR pulse sequence used performed significantly better than CT regarding conspicuity of liver lesions (p < 0.001, Wilcoxon signed ranks test), whereas no difference was noted for extrahepatic lesions. For overall lesion characterization, MRI was considered superior to CT in 40% of lesions, equal to CT in 49%, and inferior to CT in 11%. Conclusion: Fast Dixon-based T1w MRI outperformed low-dose CT in terms of conspicuity and characterization of PET-positive liver lesions and performed similarly in extrahepatic tumour manifestations. Hence, under the assumption that the technical issue of MR AC for whole-body PET examinations is solved, in abdominal PET/MR imaging the replacement of low-dose CT by a single Dixon-based MR pulse sequence for anatomical lesion correlation appears to be valid and robus

    Long-term Dynamics of the Electron-nuclear Spin System of a Semiconductor Quantum Dot

    Full text link
    A quasi-classical theoretical description of polarization and relaxation of nuclear spins in a quantum dot with one resident electron is developed for arbitrary mechanisms of electron spin polarization. The dependence of the electron-nuclear spin dynamics on the correlation time τc\tau_c of electron spin precession, with frequency Ω\Omega, in the nuclear hyperfine field is analyzed. It is demonstrated that the highest nuclear polarization is achieved for a correlation time close to the period of electron spin precession in the nuclear field. For these and larger correlation times, the indirect hyperfine field, which acts on nuclear spins, also reaches a maximum. This maximum is of the order of the dipole-dipole magnetic field that nuclei create on each other. This value is non-zero even if the average electron polarization vanishes. It is shown that the transition from short correlation time to Ωτc>1\Omega\tau_c>1 does not affect the general structure of the equation for nuclear spin temperature and nuclear polarization in the Knight field, but changes the values of parameters, which now become functions of Ωτc\Omega\tau_c. For correlation times larger than the precession time of nuclei in the electron hyperfine field, it is found that three thermodynamic potentials (χ\chi, ξ\bm{\xi}, ς\varsigma) characterize the polarized electron-nuclear spin system. The values of these potentials are calculated assuming a sharp transition from short to long correlation times, and the relaxation mechanisms of these potentials are discussed. The relaxation of the nuclear spin potential is simulated numerically showing that high nuclear polarization decreases relaxation rate.Comment: RevTeX 4, 12 pages, 9 figure

    The value of PET, CT and in-line PET/CT in patients with gastrointestinal stromal tumours: long-term outcome of treatment with imatinib mesylate

    Get PDF
    Purpose: Gastrointestinal stromal tumours (GIST) are mesenchymal neoplasms of the gastrointestinal tract that are unresponsive to standard sarcoma chemotherapy. Imaging of GIST patients is done with structural and functional methods such as contrast-enhanced helical computed tomography (ceCT) and positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG). The aim of this study was to compare the prognostic power of PET and ceCT and to evaluate the clinical role of PET/CT imaging. Methods: All patients with GIST undergoing PET or PET/CT examinations were prospectively included in this study, and the median overall survival, time to progression and treatment duration were documented. The prognostic significance of PET and ceCT criteria of treatment response was assessed and PET/CT was compared with PET and ceCT imaging. Data for 34 patients (19 male, 15 female, 21-76 years) undergoing PET or PET/CT for staging or restaging were analysed. Results: In 28 patients, PET/CT and ceCT were available after introduction of treatment with the tyrosine kinase inhibitor imatinib mesylate (Gleevec; Novartis, Basel, Switzerland). Patients without FDG uptake after the start of treatment had a better prognosis than patients with residual activity. In contrast, ceCT criteria provided insufficient prognostic power. However, more lesions were found on ceCT images than on PET images, and FDG uptake was sometimes very variable. PET/CT delineated active lesions better than did the combination of PET and ceCT imaging. Conclusion: Both PET and PET/CT provide important prognostic information and have an impact on clinical decision-making in GIST patients. PET/CT precisely delineates lesions and thus allows for the correct planning of surgical intervention
    • …
    corecore