171 research outputs found

    Determinants of Leukocyte Margination in Rectangular Microchannels

    Get PDF
    Microfabrication of polydimethylsiloxane (PDMS) devices has provided a new set of tools for studying fluid dynamics of blood at the scale of real microvessels. However, we are only starting to understand the power and limitations of this technology. To determine the applicability of PDMS microchannels for blood flow analysis, we studied white blood cell (WBC) margination in channels of various geometries and blood compositions. We found that WBCs prefer to marginate downstream of sudden expansions, and that red blood cell (RBC) aggregation facilitates the process. In contrast to tubes, WBC margination was restricted to the sidewalls in our low aspect ratio, pseudo-2D rectangular channels and consequently, margination efficiencies of more than 95% were achieved in a variety of channel geometries. In these pseudo-2D channels blood rheology and cell integrity were preserved over a range of flow rates, with the upper range limited by the shear in the vertical direction. We conclude that, with certain limitations, rectangular PDMS microfluidic channels are useful tools for quantitative studies of blood rheology

    Endothelial Cells Obtained from Patients Affected by Chronic Venous Disease Exhibit a Pro-Inflammatory Phenotype

    Get PDF
    The inflammatory properties of vein endothelium in relation to chronic venous disease (CVD) have been poorly investigated. Therefore, new insights on the characteristics of large vein endothelium would increase our knowledge of large vessel physiopathology. METHODOLOGY/PRINCIPAL FINDINGS: Surgical specimens of veins were obtained from the tertiary venous network (R3) and/or saphenous vein (SF) of patients affected by CVD and from control individuals. Highly purified venous endothelial cell (VEC) cultures obtained from CVD patients were characterized for morphological, phenotypic and functional properties compared to control VEC. An increase of CD31/PECAM-1, CD146 and ICAM-1 surface levels was documented at flow cytometry in pathological VEC with respect to normal controls. Of note, the strongest expression of these pro-inflammatory markers was observed in VEC obtained from patients with more advanced disease. Similarly, spontaneous cell proliferation and resistance to starvation was higher in pathological than in normal VEC, while the migratory response of VEC showed an opposite trend, being significantly lower in VEC obtained from pathological specimens. In addition, in keeping with a higher baseline transcriptional activity of NF-kB, the release of the pro-inflammatory cytokines osteoprotegerin (OPG) and vascular endothelial growth factor (VEGF) was higher in pathological VEC cultures with respect to control VEC. Interestingly, there was a systemic correlation to these in vitro data, as demonstrated by higher serum OPG and VEGF levels in CVD patients with respect to normal healthy controls. CONCLUSION/SIGNIFICANCE: Taken together, these data indicate that large vein endothelial cells obtained from CVD patients exhibit a pro-inflammatory phenotype, which might significantly contribute to systemic inflammation in CVD patients

    Tyrosine Sulfation of Native Mouse Psgl-1 Is Required for Optimal Leukocyte Rolling on P-Selectin In Vivo

    Get PDF
    We recently demonstrated that tyrosine sulfation is an important contributor to monocyte recruitment and retention in a mouse model of atherosclerosis. P-selectin glycoprotein ligand-1 (Psgl-1) is tyrosine-sulfated in mouse monocyte/macrophages and its interaction with P-selectin is important in monocyte recruitment in atherosclerosis. However, whether tyrosine sulfation is required for the P-selectin binding function of mouse Psgl-1 is unknown. Here we test the function of native Psgl-1 expressed in leukocytes lacking endogenous tyrosylprotein sulfotransferase (TPST) activity.Psgl-1 function was assessed by examining P-selectin dependent leukocyte rolling in post-capillary venules of C57BL6 mice transplanted with hematopoietic progenitors from wild type (WT → B6) or Tpst1;Tpst2 double knockout mice (Tpst DKO → B6) which lack TPST activity. We observed that rolling flux fractions were lower and leukocyte rolling velocities were higher in Tpst DKO → B6 venules compared to WT → B6 venules. Similar results were observed on immobilized P-selectin in vitro. Finally, Tpst DKO leukocytes bound less P-selectin than wild type leukocytes despite equivalent surface expression of Psgl-1.These findings provide direct and convincing evidence that tyrosine sulfation is required for optimal function of mouse Psgl-1 in vivo and suggests that tyrosine sulfation of Psgl-1 contributes to the development of atherosclerosis

    MicroRNA-22 and promoter motif polymorphisms at the Chga locus in genetic hypertension: functional and therapeutic implications for gene expression and the pathogenesis of hypertension

    Get PDF
    Hypertension is a common hereditary syndrome with unclear pathogenesis. Chromogranin A (Chga), which catalyzes formation and cargo storage of regulated secretory granules in neuroendocrine cells, contributes to blood pressure homeostasis centrally and peripherally. Elevated Chga occurs in spontaneously hypertensive rat (SHR) adrenal glands and plasma, but central expression is unexplored. In this report, we measured SHR and Wistar–Kyoto rat (control) Chga expression in central and peripheral nervous systems, and found Chga protein to be decreased in the SHR brainstem, yet increased in the adrenal and the plasma. By re-sequencing, we systematically identified five promoter, two coding and one 3′-untranslated region (3′-UTR) polymorphism at the SHR (versus WKY or BN) Chga locus. Using HXB/BXH recombinant inbred (RI) strain linkage and correlations, we demonstrated genetic determination of Chga expression in SHR, including a cis-quantitative trait loci (QTLs) (i.e. at the Chga locus), and such expression influenced biochemical determinants of blood pressure, including a cascade of catecholamine biosynthetic enzymes, catecholamines themselves and steroids. Luciferase reporter assays demonstrated that the 3′-UTR polymorphism (which disrupts a microRNA miR-22 motif) and promoter polymorphisms altered gene expression consistent with the decline in SHR central Chga expression. Coding region polymorphisms did not account for changes in Chga expression or function. Thus, we hypothesized that the 3′-UTR and promoter mutations lead to dysregulation (diminution) of Chga in brainstem cardiovascular control nuclei, ultimately contributing to the pathogenesis of hypertension in SHR. Accordingly, we demonstrated that in vivo administration of miR-22 antagomir to SHR causes substantial (∼18 mmHg) reductions in blood pressure, opening a novel therapeutic avenue for hypertension

    Leukotriene biosynthesis inhibition ameliorates acute lung injury following hemorrhagic shock in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic shock followed by resuscitation is conceived as an insult frequently induces a systemic inflammatory response syndrome and oxidative stress that results in multiple-organ dysfunction syndrome including acute lung injury. MK-886 is a leukotriene biosynthesis inhibitor exerts an anti inflammatory and antioxidant activity.</p> <p>Objectives</p> <p>The objective of present study was to assess the possible protective effect of MK-886 against hemorrhagic shock-induced acute lung injury via interfering with inflammatory and oxidative pathways.</p> <p>Materials and methods</p> <p>Eighteen adult Albino rats were assigned to three groups each containing six rats: group I, sham group, rats underwent all surgical instrumentation but neither hemorrhagic shock nor resuscitation was done; group II, Rats underwent hemorrhagic shock (HS) for 1 hr then resuscitated with Ringer's lactate (1 hr) (induced untreated group, HS); group III, HS + MK-886 (0.6 mg/kg i.p. injection 30 min before the induction of HS, and the same dose was repeated just before reperfusion period). At the end of experiment (2 hr after completion of resuscitation), blood samples were collected for measurement of serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The trachea was then isolated and bronchoalveolar lavage fluid (BALF) was carried out for measurement of leukotriene B<sub>4 </sub>(LTB<sub>4</sub>), leukotriene C<sub>4 </sub>(LTC<sub>4</sub>) and total protein. The lungs were harvested, excised and the left lung was homogenized for measurement of malondialdehyde (MDA) and reduced glutathione (GSH) and the right lung was fixed in 10% formalin for histological examination.</p> <p>Results</p> <p>MK-886 treatment significantly reduced the total lung injury score compared with the HS group (<it>P </it>< 0.05). MK-886 also significantly decreased serum TNF-α & IL-6; lung MDA; BALF LTB<sub>4</sub>, LTC<sub>4 </sub>& total protein compared with the HS group (<it>P </it>< 0.05). MK-886 treatment significantly prevented the decrease in the lung GSH levels compared with the HS group (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>The results of the present study reveal that MK-886 may ameliorate lung injury in shocked rats via interfering with inflammatory and oxidative pathways implicating the role of leukotrienes in the pathogenesis of hemorrhagic shock-induced lung inflammation.</p

    Hydrodynamic Regulation of Monocyte Inflammatory Response to an Intracellular Pathogen

    Get PDF
    Systemic bacterial infections elicit inflammatory response that promotes acute or chronic complications such as sepsis, arthritis or atherosclerosis. Of interest, cells in circulation experience hydrodynamic shear forces, which have been shown to be a potent regulator of cellular function in the vasculature and play an important role in maintaining tissue homeostasis. In this study, we have examined the effect of shear forces due to blood flow in modulating the inflammatory response of cells to infection. Using an in vitro model, we analyzed the effects of physiological levels of shear stress on the inflammatory response of monocytes infected with chlamydia, an intracellular pathogen which causes bronchitis and is implicated in the development of atherosclerosis. We found that chlamydial infection alters the morphology of monocytes and trigger the release of pro-inflammatory cytokines TNF-α, IL-8, IL-1β and IL-6. We also found that the exposure of chlamydia-infected monocytes to short durations of arterial shear stress significantly enhances the secretion of cytokines in a time-dependent manner and the expression of surface adhesion molecule ICAM-1. As a functional consequence, infection and shear stress increased monocyte adhesion to endothelial cells under flow and in the activation and aggregation of platelets. Overall, our study demonstrates that shear stress enhances the inflammatory response of monocytes to infection, suggesting that mechanical forces may contribute to disease pathophysiology. These results provide a novel perspective on our understanding of systemic infection and inflammation

    The Immune System in Stroke

    Get PDF
    Stroke represents an unresolved challenge for both developed and developing countries and has a huge socio-economic impact. Although considerable effort has been made to limit stroke incidence and improve outcome, strategies aimed at protecting injured neurons in the brain have all failed. This failure is likely to be due to both the incompleteness of modelling the disease and its causes in experimental research, and also the lack of understanding of how systemic mechanisms lead to an acute cerebrovascular event or contribute to outcome. Inflammation has been implicated in all forms of brain injury and it is now clear that immune mechanisms profoundly influence (and are responsible for the development of) risk and causation of stroke, and the outcome following the onset of cerebral ischemia. Until very recently, systemic inflammatory mechanisms, with respect to common comorbidities in stroke, have largely been ignored in experimental studies. The main aim is therefore to understand interactions between the immune system and brain injury in order to develop novel therapeutic approaches. Recent data from clinical and experimental research clearly show that systemic inflammatory diseases -such as atherosclerosis, obesity, diabetes or infection - similar to stress and advanced age, are associated with dysregulated immune responses which can profoundly contribute to cerebrovascular inflammation and injury in the central nervous system. In this review, we summarize recent advances in the field of inflammation and stroke, focusing on the challenges of translation between pre-clinical and clinical studies, and potential anti-inflammatory/immunomodulatory therapeutic approaches
    corecore